Patents by Inventor Te-Hao Lee

Te-Hao Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11180365
    Abstract: A microelectromechanical system (MEMS) device may include a MEMS structure over a first substrate. The MEMS structure comprises a movable element. Depositing a first conductive material over the first substrate and etching trenches in a second substrate. Filling the trenches with a second conductive material and depositing a third conductive material over the second conductive material and the second substrate. Bonding the first substrate and the second substrate and thinning a backside of the second substrate which exposes the second conductive material in the trenches.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: November 23, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Chih Liang, Chia-Hua Chu, Te-Hao Lee, Jiou-Kang Lee, Chung-Hsien Lin
  • Patent number: 11018218
    Abstract: The present disclosure, in some embodiments, relates to a method of semiconductor processing. The method may be performed by etching a substrate to define a trench within the substrate. A sacrificial material is formed within the trench. The sacrificial material has an exposed upper surface. A plurality of discontinuous openings are formed to expose separate segments of a sidewall of the sacrificial material. The plurality of discontinuous openings are separated by non-zero distances along a length of the trench. An etching process is performed to simultaneously etch the exposed upper surface and the sidewall of the sacrificial material.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: May 25, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuei-Sung Chang, Te-Hao Lee
  • Patent number: 11011601
    Abstract: The present disclosure, in some embodiments, relates to a semiconductor structure. The semiconductor structure includes a substrate. As viewed from a top-view, the substrate has a first sidewall, one or more second sidewalls, and a plurality of third sidewalls. The first sidewall extends along a first direction and defines a first side of a trench. The one or more second sidewalls extends along the first direction and define a second side of the trench. The plurality of third sidewalls are oriented in parallel and extends in a second direction perpendicular to the first direction. The plurality of third sidewalls protrude outward from the second side of the trench and define a plurality of parallel releasing openings that are separated along the first direction by the substrate. The trench continuously extends in opposing directions past the plurality of parallel releasing openings.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: May 18, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuei-Sung Chang, Te-Hao Lee
  • Publication number: 20200062588
    Abstract: A microelectromechanical system (MEMS) device may include a MEMS structure over a first substrate. The MEMS structure comprises a movable element. Depositing a first conductive material over the first substrate and etching trenches in a second substrate. Filling the trenches with a second conductive material and depositing a third conductive material over the second conductive material and the second substrate. Bonding the first substrate and the second substrate and thinning a backside of the second substrate which exposes the second conductive material in the trenches.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 27, 2020
    Inventors: Kai-Chih Liang, Chia-Hua Chu, Te-Hao Lee, Jiou-Kang Lee, Chung-Hsien Lin
  • Publication number: 20200020763
    Abstract: The present disclosure, in some embodiments, relates to a method of semiconductor processing. The method may be performed by etching a substrate to define a trench within the substrate. A sacrificial material is formed within the trench. The sacrificial material has an exposed upper surface. A plurality of discontinuous openings are formed to expose separate segments of a sidewall of the sacrificial material. The plurality of discontinuous openings are separated by non-zero distances along a length of the trench. An etching process is performed to simultaneously etch the exposed upper surface and the sidewall of the sacrificial material.
    Type: Application
    Filed: September 25, 2019
    Publication date: January 16, 2020
    Inventors: Kuei-Sung Chang, Te-Hao Lee
  • Publication number: 20200020764
    Abstract: The present disclosure, in some embodiments, relates to a semiconductor structure. The semiconductor structure includes a substrate. As viewed from a top-view, the substrate has a first sidewall, one or more second sidewalls, and a plurality of third sidewalls. The first sidewall extends along a first direction and defines a first side of a trench. The one or more second sidewalls extends along the first direction and define a second side of the trench. The plurality of third sidewalls are oriented in parallel and extends in a second direction perpendicular to the first direction. The plurality of third sidewalls protrude outward from the second side of the trench and define a plurality of parallel releasing openings that are separated along the first direction by the substrate. The trench continuously extends in opposing directions past the plurality of parallel releasing openings.
    Type: Application
    Filed: September 25, 2019
    Publication date: January 16, 2020
    Inventors: Kuei-Sung Chang, Te-Hao Lee
  • Patent number: 10497776
    Abstract: The present disclosure relates to a method of etching a narrow gap using one or more parallel releasing structures to improve etching performance, and an associated apparatus. In some embodiments, the method provides a semiconductor substrate with a narrow gap having a sacrificial material. One or more parallel releasing structures are formed within the semiconductor substrate at positions that abut the narrow gap. An etching process is then performed to simultaneously remove the sacrificial material from the narrow gap along a first direction from the one or more parallel releasing structures and along a second direction, perpendicular to the first direction. By simultaneously etching the sacrificial material from both the direction of the narrow gap and from the direction of the one or more parallel releasing structures, the sacrificial material is removed in less time, since the etch is not limited by a size of the narrow gap.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: December 3, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuei-Sung Chang, Te-Hao Lee
  • Patent number: 10457550
    Abstract: A microelectromechanical system (MEMS) device may include a MEMS structure over a first substrate. The MEMS structure comprises a movable element. Depositing a first conductive material over the first substrate and etching trenches in a second substrate. Filling the trenches with a second conductive material and depositing a third conductive material over the second conductive material and the second substrate. Bonding the first substrate and the second substrate and thinning a backside of the second substrate which exposes the second conductive material in the trenches.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: October 29, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Chih Liang, Chia-Hua Chu, Te-Hao Lee, Jiou-Kang Lee, Chung-Hsien Lin
  • Publication number: 20190047851
    Abstract: A microelectromechanical system (MEMS) device may include a MEMS structure over a first substrate. The MEMS structure comprises a movable element. Depositing a first conductive material over the first substrate and etching trenches in a second substrate. Filling the trenches with a second conductive material and depositing a third conductive material over the second conductive material and the second substrate. Bonding the first substrate and the second substrate and thinning a backside of the second substrate which exposes the second conductive material in the trenches.
    Type: Application
    Filed: October 15, 2018
    Publication date: February 14, 2019
    Inventors: Kai-Chih Liang, Chia-Hua Chu, Te-Hao Lee, Jiou-Kang Lee, Chung-Hsien Lin
  • Patent number: 10160633
    Abstract: A device includes a carrier having a plurality of cavities, a micro-electro-mechanical system (MEMS) substrate bonded on the carrier, wherein the MEMS substrate comprises a first side bonded on the carrier, a moving element over a bottom electrode, wherein the bottom electrode is formed of polysilicon and a second side having a plurality of bonding pads and a semiconductor substrate bonded on the MEMS substrate, wherein the semiconductor substrate comprises a top electrode and the first moving element is between the top electrode and the bottom electrode.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hua Chu, Chun-Wen Cheng, Te-Hao Lee, Chung-Hsien Lin
  • Patent number: 10155655
    Abstract: A device includes a carrier having a plurality of cavities, a micro-electro-mechanical system (MEMS) substrate bonded on the carrier, wherein the MEMS substrate comprises a shielding layer on the carrier and coupled to ground, a plurality of vias coupled between the shielding layer and a bottom electrode of the MEMS substrate and a moving element over the bottom electrode and a semiconductor substrate bonded on the MEMS substrate, wherein the semiconductor substrate comprises a top electrode, and wherein the moving element is between the top electrode and the bottom electrode.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: December 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hua Chu, Chun-Wen Cheng, Te-Hao Lee, Chung-Hsien Lin
  • Patent number: 10099919
    Abstract: A microelectromechanical system (MEMS) device may include a MEMS structure over a first substrate. The MEMS structure comprises a movable element. Depositing a first conductive material over the first substrate and etching trenches in a second substrate. Filling the trenches with a second conductive material and depositing a third conductive material over the second conductive material and the second substrate. Bonding the first substrate and the second substrate and thinning a backside of the second substrate which exposes the second conductive material in the trenches.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: October 16, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Chih Liang, Chia-Hua Chu, Te-Hao Lee, Jiou-Kang Lee, Chung-Hsien Lin
  • Patent number: 10071905
    Abstract: The present disclosure includes micro-electro mechanical system (MEMS) structures and methods of forming the same. Substrates of the MEMS structures are bonded together by fusion bonding at high processing temperatures, which enables more complete removal of chemical species from the dielectric materials in the substrates prior to sealing cavities of the MEMS structures. Fusion bonding of MEMS structures reduces outgassing of chemical species and is compatible with the cavity formation process. The MEMS structures bonded by fusion bonding are mechanically stronger compared to eutectic bonding due to a higher bonding ratio. In addition, fusion bonding enables the formation of through substrate vias (TSVs) in the MEMS structures.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: September 11, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hua Chu, Kuei-Sung Chang, Te-Hao Lee
  • Patent number: 9617147
    Abstract: Exemplary microelectromechanical system (MEMS) devices, and methods for fabricating such are disclosed. An exemplary method includes providing a silicon-on-insulator (SOI) substrate, wherein the SOI substrate includes a first silicon layer separated from a second silicon layer by an insulator layer; processing the first silicon layer to form a first structure layer of a MEMS device; bonding the first structure layer to a substrate; and processing the second silicon layer to form a second structure layer of the MEMS device.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: April 11, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hua Chu, Chun-Wen Cheng, Jiou-Kang Lee, Kai-Chih Liang, Chung-Hsien Lin, Te-Hao Lee
  • Patent number: 9611548
    Abstract: A wafer rotating apparatus includes a base, a carrying device, a first shaft gear, a power unit, a roller, a second shaft gear and a driving assembly. The base has an accommodating space which the carrying device is disposed in to accommodate the wafer. The first shaft gear is disposed on a side surface of the base. The power unit is assembled to a top of the base and connected to the first shaft gear. The roller is located under the carrying device and supports an edge of the wafer. The second shaft gear is disposed on the side surface of the base and connected to the roller. The driving assembly is connected between the first shaft gear and the second shaft gear. The power unit provides a power through the first gear, the driving unit and the second shaft gear to drive the roller to rotate the wafer.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: April 4, 2017
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Yuan-Hao Chang, Te-Hao Lee, Ying-Ru Shih, Wen-Ching Hsu
  • Publication number: 20170066647
    Abstract: A microelectromechanical system (MEMS) device may include a MEMS structure over a first substrate. The MEMS structure comprises a movable element. Depositing a first conductive material over the first substrate and etching trenches in a second substrate. Filling the trenches with a second conductive material and depositing a third conductive material over the second conductive material and the second substrate. Bonding the first substrate and the second substrate and thinning a backside of the second substrate which exposes the second conductive material in the trenches.
    Type: Application
    Filed: November 17, 2016
    Publication date: March 9, 2017
    Inventors: Kai-Chih Liang, Chia-Hua Chu, Te-Hao Lee, Jiou-Kang Lee, Chung-Hsien Lin
  • Publication number: 20170022049
    Abstract: The present disclosure includes micro-electro mechanical system (MEMS) structures and methods of forming the same. Substrates of the MEMS structures are bonded together by fusion bonding at high processing temperatures, which enables more complete removal of chemical species from the dielectric materials in the substrates prior to sealing cavities of the MEMS structures. Fusion bonding of MEMS structures reduces outgassing of chemical species and is compatible with the cavity formation process. The MEMS structures bonded by fusion bonding are mechanically stronger compared to eutectic bonding due to a higher bonding ratio. In addition, fusion bonding enables the formation of through substrate vias (TSVs) in the MEMS structures.
    Type: Application
    Filed: October 10, 2016
    Publication date: January 26, 2017
    Inventors: Chia-Hua CHU, Kuei-Sung CHANG, Te-Hao LEE
  • Publication number: 20170008758
    Abstract: A device includes a carrier having a plurality of cavities, a micro-electro-mechanical system (MEMS) substrate bonded on the carrier, wherein the MEMS substrate comprises a first side bonded on the carrier, a moving element over a bottom electrode, wherein the bottom electrode is formed of polysilicon and a second side having a plurality of bonding pads and a semiconductor substrate bonded on the MEMS substrate, wherein the semiconductor substrate comprises a top electrode and the first moving element is between the top electrode and the bottom electrode.
    Type: Application
    Filed: September 26, 2016
    Publication date: January 12, 2017
    Inventors: Chia-Hua Chu, Chun-Wen Cheng, Te-Hao Lee, Chung-Hsien Lin
  • Publication number: 20170001860
    Abstract: A device includes a carrier having a plurality of cavities, a micro-electro-mechanical system (MEMS) substrate bonded on the carrier, wherein the MEMS substrate comprises a shielding layer on the carrier and coupled to ground, a plurality of vias coupled between the shielding layer and a bottom electrode of the MEMS substrate and a moving element over the bottom electrode and a semiconductor substrate bonded on the MEMS substrate, wherein the semiconductor substrate comprises a top electrode, and wherein the moving element is between the top electrode and the bottom electrode.
    Type: Application
    Filed: September 16, 2016
    Publication date: January 5, 2017
    Inventors: Chia-Hua Chu, Chun-Wen Cheng, Te-Hao Lee, Chung-Hsien Lin
  • Patent number: 9499396
    Abstract: A microelectromechanical system (MEMS) device may include a MEMS structure over a first substrate. The MEMS structure comprises a movable element. Depositing a first conductive material over the first substrate and etching trenches in a second substrate. Filling the trenches with a second conductive material and depositing a third conductive material over the second conductive material and the second substrate. Bonding the first substrate and the second substrate and thinning a backside of the second substrate which exposes the second conductive material in the trenches.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: November 22, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Chih Liang, Chia-Hua Chu, Te-Hao Lee, Jiou-Kang Lee, Chung-Hsien Lin