Patents by Inventor Te-Hsien Hsieh

Te-Hsien Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160147140
    Abstract: The present invention provides a pattern verifying method. First, a target pattern is decomposed into a first pattern and a second pattern. A first OPC process is performed for the first pattern to form a first revised pattern, and a second OPC process is performed for the second pattern to form a second revised pattern. An inspection process is performed, wherein the inspection process comprises an after mask inspection (AMI) process, which comprises considering the target pattern, the first pattern and the second pattern.
    Type: Application
    Filed: January 21, 2015
    Publication date: May 26, 2016
    Inventors: Te-Hsien Hsieh, Ming-Jui Chen, Cheng-Te Wang, Jing-Yi Lee, Jian-Yuan Ma, Yan-Chun Chen
  • Patent number: 9262820
    Abstract: A method for IC design is provided. Firstly, an IC design layout having a main feature with an original margin is received. Then, a first modified margin of the main feature is generated; and a first photolithography simulation procedure of the main feature with the first modified margin is performed to generate a first contour having a plurality of curves. Next, an equation of each of the curves is obtained; each equation of the curves is manipulated to obtain a vertex of each of the curves. After that, a first group of target points are assigned to the original margin. Each of the first group of target points respectively corresponds to one of the vertices. Finally, an optical proximity correction (OPC) procedure is performed by using the first group of target points to generate a second modified margin. An apparatus for IC design is also provided.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: February 16, 2016
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Te-Hsien Hsieh, Ming-Jui Chen, Cheng-Te Wang, Jing-Yi Lee
  • Publication number: 20150332449
    Abstract: A method for IC design is provided. Firstly, an IC design layout having a main feature with an original margin is received. Then, a first modified margin of the main feature is generated; and a first photolithography simulation procedure of the main feature with the first modified margin is performed to generate a first contour having a plurality of curves. Next, an equation of each of the curves is obtained; each equation of the curves is manipulated to obtain a vertex of each of the curves. After that, a first group of target points are assigned to the original margin. Each of the first group of target points respectively corresponds to one of the vertices. Finally, an optical proximity correction (OPC) procedure is performed by using the first group of target points to generate a second modified margin. An apparatus for IC design is also provided.
    Type: Application
    Filed: May 19, 2014
    Publication date: November 19, 2015
    Applicant: UNITED MICROELECTRONICS CORPORATION
    Inventors: Te-Hsien HSIEH, Ming-Jui CHEN, Cheng-Te WANG, Jing-Yi LEE
  • Patent number: 9047658
    Abstract: A calculation method of optical proximity correction includes providing at least a feature pattern to a computer system. At least a first template and a second template are defined so that portions of the feature pattern are located in the first template and the rest of the feature pattern is located in the second template. The first template and the second template have a common boundary. Afterwards, a first calculation zone is defined to overlap an entire first template and portions of the feature pattern out of the first template. Edges of the feature pattern within the first calculation zone are then fragmented from the common boundary towards two ends of the feature pattern so as to generate at least two first beginning segments respectively at two sides of the common boundary. Finally, positions of the first beginning segments are adjusted so as to generate first adjusted segments.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: June 2, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Te-Hsien Hsieh, Ming-Jui Chen, Cheng-Te Wang, Ping-I Hsieh, Jing-Yi Lee
  • Publication number: 20150125063
    Abstract: A calculation method of optical proximity correction includes providing at least a feature pattern to a computer system. At least a first template and a second template are defined so that portions of the feature pattern are located in the first template and the rest of the feature pattern is located in the second template. The first template and the second template have a common boundary. Afterwards, a first calculation zone is defined to overlap an entire first template and portions of the feature pattern out of the first template. Edges of the feature pattern within the first calculation zone are then fragmented from the common boundary towards two ends of the feature pattern so as to generate at least two first beginning segments respectively at two sides of the common boundary. Finally, positions of the first beginning segments are adjusted so as to generate first adjusted segments.
    Type: Application
    Filed: November 5, 2013
    Publication date: May 7, 2015
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Te-Hsien Hsieh, Ming-Jui Chen, Cheng-Te Wang, Ping-I Hsieh, Jing-Yi Lee
  • Publication number: 20150036116
    Abstract: An aperture is configured to be disposed between an illumination source and a semiconductor substrate in a photolithography system. The aperture includes a light-transmission portion with a non-planar thickness profile to compensate the discrepancy of wave-fronts of the light beams of different orders.
    Type: Application
    Filed: August 2, 2013
    Publication date: February 5, 2015
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Te-Hsien Hsieh, Shih-Ming Kuo, Ming-Jui Chen, Cheng-Te Wang, Jing-Yi Lee
  • Patent number: 8885917
    Abstract: A mask pattern and a correcting method thereof are provided. The correcting method includes the following steps. An original pattern having a first original contour and a second original contour is provided. The first original contour has a first original corner. The second original contour has a second original corner, which is near the first original corner. The first and second original corners are cut to form a cut pattern. An optical proximity correction (OPC) process is applied to the cut pattern to form the mask pattern.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: November 11, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Te-Hsien Hsieh, Ming-Jui Chen, Cheng-Te Wang, Jing-Yi Lee
  • Patent number: 8806391
    Abstract: A method of optical proximity correction (OPC) includes the following steps. At first, a layout pattern is provided to a computer system. Subsequently, the layout pattern is classified into at least a first region and at least a second region. Then, several iterations of OPC calculations are performed to the layout pattern, and a total number of OPC calculations performed in the first region is substantially larger than a total number of OPC calculations performed in the second region. Afterwards, a corrected layout pattern is outputted through the computer system onto a mask.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: August 12, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Te-Hsien Hsieh, Ming-Jui Chen, Cheng-Te Wang, Shih-Ming Kuo, Jing-Yi Lee
  • Patent number: 8745547
    Abstract: A method for making a photomask layout is disclosed. A graphic data of a photomask is provided. A first correction step is performed to the graphic data. A first verification step is performed to all of the graphic data which has been subjected to the first correction step, wherein at least one failed pattern not passing the first verification step is found. A second correction step is performed to the at least one failed pattern, so as to obtain at least one modified pattern. A second verification step is performed only to at least one buffer region covering the at least one modified pattern, wherein the buffer region has an area less than a whole area of the photomask. Besides, each of the first correction step, the first verification step, the second correction step and the second verification step is executed by a computer.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: June 3, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Shih-Ming Kuo, Ming-Jui Chen, Te-Hsien Hsieh, Cheng-Te Wang, Jing-Yi Lee
  • Publication number: 20140040837
    Abstract: A method of optical proximity correction (OPC) includes the following steps. At first, a layout pattern is provided to a computer system. Subsequently, the layout pattern is classified into at least a first region and at least a second region. Then, several iterations of OPC calculations are performed to the layout pattern, and a total number of OPC calculations performed in the first region is substantially larger than a total number of OPC calculations performed in the second region. Afterwards, a corrected layout pattern is outputted through the computer system onto a mask.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Inventors: Te-Hsien Hsieh, Ming-Jui Chen, Cheng-Te Wang, Shih-Ming Kuo, Jing-Yi Lee
  • Publication number: 20130163850
    Abstract: A mask pattern and a correcting method thereof are provided. The correcting method includes the following steps. An original pattern having a first original contour and a second original contour is provided. The first original contour has a first original corner. The second original contour has a second original corner, which is near the first original corner. The first and second original corners are cut to form a cut pattern. An optical proximity correction (OPC) process is applied to the cut pattern to form the mask pattern.
    Type: Application
    Filed: December 27, 2011
    Publication date: June 27, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Te-Hsien Hsieh, Ming-Jui Chen, Cheng-Te Wang, Jing-Yi Lee
  • Patent number: 8383299
    Abstract: A double patterning mask set includes a first mask having a first set of via patterns, and a second mask having a second set of via patterns. The first set of via patterns includes at least two via patterns arranged along a diagonal direction, each of the at least two via patterns has at least a truncated corner. The first set of via patterns and the second set of via patterns are interlacedly arranged along a horizontal direction and a vertical direction.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: February 26, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Te-Hsien Hsieh, Ming-Jui Chen, Shih-Ming Kuo, Ping-I Hsieh, Cheng-Te Wang, Jing-Yi Lee
  • Publication number: 20120295186
    Abstract: A double patterning mask set includes a first mask having a first set of via patterns, and a second mask having a second set of via patterns. The first set of via patterns includes at least two via patterns arranged along a diagonal direction, each of the at least two via patterns has at least a truncated corner. The first set of via patterns and the second set of via patterns are interlacedly arranged along a horizontal direction and a vertical direction.
    Type: Application
    Filed: May 17, 2011
    Publication date: November 22, 2012
    Inventors: Te-Hsien Hsieh, Ming-Jui Chen, Shih-Ming Kuo, Ping-I Hsieh, Cheng-Te Wang, Jing-Yi Lee
  • Patent number: 8283093
    Abstract: An optical proximity correction process for designing a mask according to a target exposure intensity of each edge of a pattern is provided. Each edge is at a corresponding current edge position which corresponds to a current exposure intensity. The process comprises repeating a convergence process on each edge to determine an adjusted position for the edge until an adjusted exposure intensity of the edge is equal to the target exposure intensity. For each edge, the convergence process comprises comparing the target exposure intensity with the current exposure intensity to determine an in-position correlating to a first exposure intensity and an out-position correlating to a second exposure intensity, wherein the target exposure intensity is within a range between the first and the second exposure intensities. An interpolation is performed to obtain the adjusted position according to the target exposure intensity. The pattern is updated according to the adjusted position.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: October 9, 2012
    Assignee: United Microelectronics Corp.
    Inventors: Te-Hsien Hsieh, Jing-Yi Lee
  • Publication number: 20110305977
    Abstract: An optical proximity correction process for designing a mask according to a target exposure intensity of each edge of a pattern is provided. Each edge is at a corresponding current edge position which corresponds to a current exposure intensity. The process comprises repeating a convergence process on each edge to determine an adjusted position for the edge until an adjusted exposure intensity of the edge is equal to the target exposure intensity. For each edge, the convergence process comprises comparing the target exposure intensity with the current exposure intensity to determine an in-position correlating to a first exposure intensity and an out-position correlating to a second exposure intensity, wherein the target exposure intensity is within a range between the first and the second exposure intensities. An interpolation is performed to obtain the adjusted position according to the target exposure intensity. The pattern is updated according to the adjusted position.
    Type: Application
    Filed: June 9, 2010
    Publication date: December 15, 2011
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Te-Hsien Hsieh, Jing-Yi Lee