Patents by Inventor Teng-Chun Tsai

Teng-Chun Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10269935
    Abstract: A semiconductor device includes a first fin structure for a first fin field effect transistor (PET). The first fin structure includes a first base layer protruding from a substrate, a first intermediate layer disposed over the first base layer and a first channel layer disposed over the first intermediate layer. The first fin structure further includes a first protective layer made of a material that prevents an underlying layer from oxidation. The first channel layer is made of SiGe, the first intermediate layer includes a first semiconductor (e.g., SiGe) layer disposed over the first base layer and a second semiconductor layer (e.g., Si) disposed over the first semiconductor layer. The first protective layer covers side walls of the first base layer, side walls of the first semiconductor layer and side walls of the second semiconductor layer.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: April 23, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Gin-Chen Huang, Tzu-Hsiang Hsu, Chia-Jung Hsu, Feng-Cheng Yang, Teng-Chun Tsai
  • Patent number: 10269567
    Abstract: A method includes forming a first insulating layer over a substrate, the first insulating layer having a non-planar top surface, the first insulating layer having a first etch rate. A second insulating layer is formed over the first insulating layer, the second insulating layer having a non-planar top surface, the second insulating layer having a second etch rate, the second etch rate being greater than the first etch rate. The second insulating layer is polished, the polishing partially removing the second insulating layer. The first insulating layer and the second insulating layer are non-selectively recessed.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Teng-Chun Tsai, Yung-Cheng Lu, Ying-Tsung Chen, Tien-I Bao
  • Patent number: 10256143
    Abstract: The present disclosure describes a method of forming a replacement contact. For example, the replacement contact can include a metal with one or more first sidewall surfaces and a top surface. A first dielectric can be formed to abut the one or more first sidewall surfaces of the metal. A second dielectric can be formed over the first dielectric and the top surface of the metal. An opening in the second dielectric can be formed. A metal oxide structure can be selectively grown on the top surface of the metal, where the metal oxide structure has one or more second sidewall surfaces. One or more spacers can be formed to abut the one or more second sidewall surfaces of the metal oxide structure. Further, the metal oxide structure can be removed.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: April 9, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yee-Chia Yeo, Teng-Chun Tsai, Yasutoshi Okuno
  • Publication number: 20190103304
    Abstract: An embodiment method includes depositing a first dielectric film over and along sidewalls of a semiconductor fin, the semiconductor fin extending upwards from a semiconductor substrate. The method further includes depositing a dielectric material over the first dielectric film; recessing the first dielectric film below a top surface of the semiconductor fin to define a dummy fin, the dummy fin comprising an upper portion of the dielectric material; and forming a gate stack over and along sidewalls of the semiconductor fin and the dummy fin.
    Type: Application
    Filed: August 16, 2018
    Publication date: April 4, 2019
    Inventors: Chin-Hsiang Lin, Keng-Chu Lin, Shwang-Ming Jeng, Teng-Chun Tsai, Tsu-Hsiu Perng, Fu-Ting Yen
  • Publication number: 20190103323
    Abstract: A method includes forming a gate stack, which includes a gate dielectric and a metal gate electrode over the gate dielectric. An inter-layer dielectric is formed on opposite sides of the gate stack. The gate stack and the inter-layer dielectric are planarized. The method further includes forming an inhibitor film on the gate stack, with at least a portion of the inter-layer dielectric exposed, selectively depositing a dielectric hard mask on the inter-layer dielectric, with the inhibitor film preventing the dielectric hard mask from being formed thereon, and etching to remove a portion of the gate stack, with the dielectric hard mask acting as a portion of a corresponding etching mask.
    Type: Application
    Filed: January 2, 2018
    Publication date: April 4, 2019
    Inventors: Tsu-Hsiu Perng, Kai-Chieh Yang, Zhi-Chang Lin, Teng-Chun Tsai, Wei-Hao Wu
  • Publication number: 20190103283
    Abstract: A method for manufacturing a semiconductor device includes forming a gate electrode over a substrate; forming a hard mask over the gate electrode, in which the hard mask comprises a metal oxide; forming an interlayer dielectric (ILD) layer over the hard mask; forming a contact hole in the ILD layer, wherein the contact hole exposes a source/drain; filling the contact hole with a conductive material; and applying a chemical mechanical polish process to the ILD layer and the conductive material, wherein the chemical mechanical polish process stops at the hard mask, the chemical mechanical polish process uses a slurry containing a boric acid or its derivative, the chemical mechanical polish process has a first removal rate of the ILD layer and a second removal rate of the hard mask, and a first ratio of the first removal rate to the second removal rate is greater than about 5.
    Type: Application
    Filed: August 3, 2018
    Publication date: April 4, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chen-Hao WU, Shen-Nan LEE, Chung-Wei HSU, Tsung-Ling TSAI, Teng-Chun TSAI
  • Publication number: 20190103324
    Abstract: A method includes forming a gate stack, which includes a gate dielectric and a metal gate electrode over the gate dielectric. An inter-layer dielectric is formed on opposite sides of the gate stack. The gate stack and the inter-layer dielectric are planarized. The method further includes forming an inhibitor film on the gate stack, with at least a portion of the inter-layer dielectric exposed, selectively depositing a dielectric hard mask on the inter-layer dielectric, with the inhibitor film preventing the dielectric hard mask from being formed thereon, and etching to remove a portion of the gate stack, with the dielectric hard mask acting as a portion of a corresponding etching mask.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 4, 2019
    Inventors: Tsu-Hsiu Perng, Kai-Chieh Yang, Zhi-Chang Lin, Teng-Chun Tsai, Wei-Hao Wu
  • Publication number: 20190096686
    Abstract: A method includes forming a spin-on carbon (SOC) layer over a target structure; chemically treating an upper portion of the SOC layer; forming a sacrificial layer over the SOC layer; performing a chemical mechanical polish (CMP) process on the sacrificial layer until reaching the SOC layer, wherein the chemically treated upper portion of the SOC layer has a higher resistance to the CMP process than that of the sacrificial layer; forming a patterned photoresist layer over the SOC layer after the CMP process; and etching the target structure using the patterned photoresist layer as a mask.
    Type: Application
    Filed: September 21, 2018
    Publication date: March 28, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Wei HSU, Yu-Chung SU, Chen-Hao WU, Shen-Nan LEE, Tsung-Ling TSAI, Teng-Chun TSAI
  • Publication number: 20190067446
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes device fins formed on a substrate; fill fins formed on the substrate and disposed among the device fins; and gate stacks formed on the device fins and the fill fins. The fill fins include a first dielectric material layer and a second dielectric material layer deposited on the first dielectric material layer. The first and second dielectric material layers are different from each other in composition.
    Type: Application
    Filed: January 8, 2018
    Publication date: February 28, 2019
    Inventors: Kuo-Cheng Ching, Teng-Chun Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 10160091
    Abstract: An apparatus for performing chemical mechanical polish on a wafer includes a polishing head that includes a retaining ring. The polishing head is configured to hold the wafer in the retaining ring. The retaining ring includes a first ring having a first hardness, and a second ring encircled by the first ring, wherein the second ring has a second hardness smaller than the first hardness.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Te-Chien Hou, Ching-Hong Jiang, Kuo-Yin Lin, Ming-Shiuan She, Shen-Nan Lee, Teng-Chun Tsai, Yung-Cheng Lu
  • Patent number: 10164102
    Abstract: A method includes providing a semiconductor substrate having first and second regions that are doped with first and second dopants respectively. The first and second dopants are of opposite types. The method further includes epitaxially growing a first semiconductor layer that is doped with a third dopant. The first and third dopants are of opposite types. The method further includes depositing a dielectric hard mask (HM) layer over the first semiconductor layer; patterning the dielectric HM layer to have an opening over the first region; extending the opening towards the semiconductor substrate; and epitaxially growing a second semiconductor layer in the opening. The second semiconductor layer is doped with a fourth dopant. The first and fourth dopants are of a same type. The method further includes removing the dielectric HM layer; and performing a first CMP process to planarize both the first and second semiconductor layers.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Yin Lin, Teng-Chun Tsai, Po-Yu Lin
  • Patent number: 10157995
    Abstract: A method includes forming a gate stack over a semiconductor region, depositing an impurity layer over the semiconductor region, and depositing a metal layer over the impurity layer. An annealing is then performed, wherein the elements in the impurity layer are diffused into a portion of the semiconductor region by the annealing to form a source/drain region, and wherein the metal layer reacts with a surface layer of the portion of the semiconductor region to form a source/drain silicide region over the source/drain region.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: December 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Ting Wang, Teng-Chun Tsai, Chun-Hsiung Lin, Cheng-Tung Lin, Chi-Yuan Chen, Hong-Mao Lee, Huicheng Chang
  • Publication number: 20180350655
    Abstract: According to an exemplary embodiment, a method of forming an isolation layer is provided. The method includes the following operations: providing a substrate; providing a vertical structure having a first layer over the substrate; providing a first interlayer dielectric over the first layer; performing CMP on the first interlayer dielectric; and etching back the first interlayer dielectric and the first layer to form the isolation layer corresponding to a source of the vertical structure.
    Type: Application
    Filed: July 30, 2018
    Publication date: December 6, 2018
    Inventors: Teng-Chun TSAI, Bing-Hung CHEN, Chien-Hsun WANG, Cheng-Tung LIN, Chih-Tang PENG, De-Fang CHEN, Huan-Just LIN, Li-Ting WANG, Yung-Cheng LU
  • Patent number: 10144109
    Abstract: A polisher includes a wafer carrier, a polishing head, a movement mechanism, and a rotation mechanism. The wafer carrier has a supporting surface. The supporting surface is configured to carry a wafer thereon. The polishing head is present above the wafer carrier. The polishing head has a polishing surface. The polishing surface of the polishing head is smaller than the supporting surface of the wafer carrier. The movement mechanism is configured to move the polishing head relative to the wafer carrier. The rotation mechanism is configured to rotate the polishing head relative to the wafer carrier.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: December 4, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Teng-Chun Tsai, Shen-Nan Lee, Yung-Cheng Lu, Chia-Chiung Lo, Shwang-Ming Jeng, Yee-Chia Yeo
  • Patent number: 10141193
    Abstract: A semiconductor device including a substrate, a spacer and a high-k dielectric layer having a U-shape profile is provided. The spacer located on the substrate surrounds and defines a trench. The high-k dielectric layer having a U-shape profile is located in the trench, and the high-k dielectric layer having a U-shape profile exposes an upper portion of the sidewalls of the trench.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: November 27, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chin-Cheng Chien, Chun-Yuan Wu, Chih-Chien Liu, Chin-Fu Lin, Teng-Chun Tsai
  • Publication number: 20180291234
    Abstract: A CMP slurry composition which provides for a high Ge- or SiGe-to-dielectric material selectivity a low rate of Ge or SiGe recess formation includes an oxidant and a germanium removal rate enhancer including at least one of a methylpyridine compound and a methylpyridine derivative compound. In some examples, the slurry composition also includes an etching inhibitor. In some cases, the slurry composition may include an abrasive, a surfactant, an organic complexant, a chelating agent, an organic or inorganic acid, an organic or inorganic base, a corrosion inhibitor, or a buffer. The slurry composition may be distributed onto a surface of a polishing pad disposed on a platen that is configured to rotate. Additionally, a workpiece carrier configured to house a substrate may bring the substrate into contact with the rotating polishing pad and thereby polish the substrate utilizing the slurry composition.
    Type: Application
    Filed: June 11, 2018
    Publication date: October 11, 2018
    Inventors: Chia-Jung HSU, Yun-Lung HO, Neng-Kuo CHEN, Song-Yuan CHANG, Teng-Chun TSAI
  • Patent number: 10068992
    Abstract: A semiconductor device includes a fin structure for a fin field effect transistor (FET). The fin structure includes a base layer protruding from a substrate, an intermediate layer disposed over the base layer and an upper layer disposed over the intermediate layer. The fin structure further includes a first protective layer and a second protective layer made of a different material than the first protective layer. The intermediate layer includes a first semiconductor layer disposed over the base layer, the first protective layer covers at least side walls of the first semiconductor layer and the second protective layer covers at least side walls of the first protective layer.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: September 4, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung Lo, Tzu-Hsiang Hsu, Chia-Jung Hsu, Feng-Cheng Yang, Teng-Chun Tsai, Ying-Ho Chen
  • Publication number: 20180240909
    Abstract: A method includes providing a semiconductor substrate having first and second regions that are doped with first and second dopants respectively. The first and second dopants are of opposite types. The method further includes epitaxially growing a first semiconductor layer that is doped with a third dopant. The first and third dopants are of opposite types. The method further includes depositing a dielectric hard mask (HM) layer over the first semiconductor layer; patterning the dielectric HM layer to have an opening over the first region; extending the opening towards the semiconductor substrate; and epitaxially growing a second semiconductor layer in the opening. The second semiconductor layer is doped with a fourth dopant. The first and fourth dopants are of a same type. The method further includes removing the dielectric HM layer; and performing a first CMP process to planarize both the first and second semiconductor layers.
    Type: Application
    Filed: April 23, 2018
    Publication date: August 23, 2018
    Inventors: Kuo-Yin Lin, Teng-Chun Tsai, Po-Yu Lin
  • Publication number: 20180240882
    Abstract: According to an exemplary embodiment, a method of forming a vertical structure with at least two barrier layers is provided. The method includes the following operations: providing a substrate; providing a vertical structure over the substrate; providing a first barrier layer over a source, a channel, and a drain of the vertical structure; and providing a second barrier layer over a gate and the drain of the vertical structure.
    Type: Application
    Filed: April 23, 2018
    Publication date: August 23, 2018
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Tang PENG, Tai-Chun HUANG, Teng-Chun TSAI, Cheng-Tung LIN, De-Fang CHEN, Li-Ting WANG, Chien-Hsun WANG, Huan-Just LIN, Yung-Cheng LU, Tze-Liang LEE
  • Patent number: 10026658
    Abstract: Systems and methods are provided for fabricating nanowire devices on a substrate. A first nanowire and a second nanowire are formed on a substrate, the first nanowire and the second nanowire extending substantially vertically relative to the substrate. A first source region and a first drain region are formed with n-type dopants, the first nanowire being disposed between the first source region and the first drain region. A second source region and a second drain region are formed with p-type dopants, the second nanowire being disposed between the second source region and the second drain region.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: July 17, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Teng-Chun Tsai, Cheng-Tung Lin, Li-Ting Wang, De-Fang Chen, Huan-Just Lin