Patents by Inventor Teng-Chun Tsai

Teng-Chun Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200373160
    Abstract: A method includes forming a metal layer over a substrate; forming a dielectric layer over the metal layer; removing a first portion of the dielectric layer to expose a first portion of the metal layer, while a second portion of the dielectric layer remains on the metal layer; selectively forming a first inhibitor on the second portion of the dielectric layer, while the metal layer is free of coverage by the first inhibitor; and selectively depositing a first hard mask on the exposed first portion of the metal layer, while the first inhibitor is free of coverage by the first hard mask.
    Type: Application
    Filed: August 8, 2020
    Publication date: November 26, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Wei SU, Fu-Ting YEN, Teng-Chun TSAI
  • Patent number: 10847410
    Abstract: A method of manufacturing a semiconductor structure includes: forming a dielectric layer over a conductive layer; removing a portion of the dielectric layer to form an opening exposing a portion of the conductive layer; filling a ruthenium-containing material in the opening and in contact with the dielectric layer; and polishing the ruthenium-containing material using a slurry including an abrasive and an oxidizer selected from the group consisting of hydrogen peroxide (H2O2), potassium periodate (KIO4), potassium iodate (KIO3), potassium permanganate (KMnO4), iron(III) nitrate (FeNO3) and a combination thereof.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: November 24, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shen-Nan Lee, Teng-Chun Tsai, Chen-Hao Wu, Chu-An Lee, Chun-Hung Liao, Tsung-Ling Tsai
  • Patent number: 10847413
    Abstract: A semiconductor device and a method of forming the same are provided. A method includes forming a gate over a semiconductor structure. An epitaxial source/drain region is formed adjacent the gate. A dielectric layer is formed over the epitaxial source/drain region. An opening extending through the dielectric layer and exposing the epitaxial source/drain region is formed. A conductive material is non-conformally deposited in the opening. The conductive material fills the opening in a bottom-up manner.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: November 24, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mrunal A Khaderbad, Yasutoshi Okuno, Sung-Li Wang, Pang-Yen Tsai, Shen-Nan Lee, Teng-Chun Tsai
  • Publication number: 20200365588
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate having adjacent first and second fins protruding from the substrate. The semiconductor device structure also includes an insulating structure that includes a first insulating layer formed between and separating from the first fin and the second fin, a second insulating layer embedded in the first insulating layer, a first capping layer formed in the first insulating layer to cover a top surface of the second insulating layer, and a second capping layer in the first capping layer.
    Type: Application
    Filed: July 13, 2020
    Publication date: November 19, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chu-An LEE, Chen-Hao WU, Peng-Chung JANGJIAN, Chun-Wen HSIAO, Teng-Chun TSAI, Huang-Lin CHAO
  • Patent number: 10840133
    Abstract: The present disclosure provides one embodiment of a semiconductor structure. The semiconductor structure includes a semiconductor substrate; a first conductive feature and a second conductive feature disposed on the semiconductor substrate; and a staggered dielectric feature interposed between the first and second conductive feature. The staggered dielectric feature includes first dielectric layers and second dielectric layers being interdigitated. The first dielectric layers include a first dielectric material and the second dielectric layers include a second dielectric material being different from the first dielectric material.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: November 17, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Zhi-Chang Lin, Teng-Chun Tsai, Wei-Hao Wu
  • Publication number: 20200357646
    Abstract: A semiconductor device includes a substrate, a gate structure over the substrate, gate spacers on opposite sidewalls of the gate structure, an inhibitor residue over gate structure and between the gate spacers, and source/drain structures on opposite sides of the gate structure. The inhibitor residue lines a sidewall of one of the gate spacers.
    Type: Application
    Filed: July 27, 2020
    Publication date: November 12, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Wei SU, Fu-Ting YEN, Ting-Ting CHEN, Teng-Chun TSAI
  • Publication number: 20200357653
    Abstract: The present disclosure provides a slurry. The slurry includes an abrasive including a ceria compound; a removal rate regulator to adjust removal rates of the slurry to metal and to dielectric material; and a buffering agent to adjust a pH value of the slurry, wherein the slurry comprises a dielectric material removal rate higher than a metal oxide removal rate.
    Type: Application
    Filed: July 27, 2020
    Publication date: November 12, 2020
    Inventors: CHUN-HUNG LIAO, CHUNG-WEI HSU, TSUNG-LING TSAI, CHEN-HAO WU, AN-HSUAN LEE, SHEN-NAN LEE, TENG-CHUN TSAI, HUANG-LIN CHAO
  • Publication number: 20200350434
    Abstract: A method includes providing a semiconductor substrate having first and second regions that are doped with first and second dopants respectively. The first and second dopants are of opposite types. The method further includes epitaxially growing a first semiconductor layer that is doped with a third dopant. The first and third dopants are of opposite types. The method further includes depositing a dielectric hard mask (HM) layer over the first semiconductor layer; patterning the dielectric HM layer to have an opening over the first region; extending the opening towards the semiconductor substrate; and epitaxially growing a second semiconductor layer in the opening. The second semiconductor layer is doped with a fourth dopant. The first and fourth dopants are of a same type. The method further includes removing the dielectric HM layer; and performing a first CMP process to planarize both the first and second semiconductor layers.
    Type: Application
    Filed: July 13, 2020
    Publication date: November 5, 2020
    Inventors: Kuo-Yin Lin, Teng-Chun Tsai, Po-Yu Lin
  • Publication number: 20200335388
    Abstract: According to an exemplary embodiment, a method of forming an isolation layer is provided. The method includes the following operations: providing a substrate; providing a vertical structure having a first layer over the substrate; providing a first interlayer dielectric over the first layer; performing CMP on the first interlayer dielectric; and etching back the first interlayer dielectric and the first layer to form the isolation layer corresponding to a source of the vertical structure.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 22, 2020
    Inventors: Teng-Chun TSAI, Bing-Hung CHEN, Chien-Hsun WANG, Cheng-Tung LIN, Chih-Tang PENG, De-Fang CHEN, Huan-Just LIN, Li-Ting WANG, Yung-Cheng LU
  • Publication number: 20200294821
    Abstract: A post CMP cleaning apparatus is provided. The post CMP cleaning apparatus includes a cleaning stage. The post CMP cleaning apparatus also includes a rotating platen disposed in the cleaning stage, and the rotating platen is configured to hold and rotate a semiconductor wafer. The post CMP cleaning apparatus further includes a vibrating device disposed over the rotating platen. The post CMP cleaning apparatus further includes a solution delivery module disposed near the vibrating device and configured to deliver a cleaning fluid to the semiconductor wafer. The vibrating device is configured to provide the cleaning fluid with a specific frequency which is at least greater than 100 MHz while the rotating platen is rotating the semiconductor wafer, so that particles on the semiconductor wafer are removed by the cleaning fluid.
    Type: Application
    Filed: March 14, 2019
    Publication date: September 17, 2020
    Inventors: Chen-Hao WU, Chu-An LEE, Chun-Hung LIAO, Shen-Nan LEE, Teng-Chun TSAI, Huang-Lin CHAO, Chih-Hung CHEN
  • Patent number: 10774241
    Abstract: A slurry solution for a Chemical Mechanical Polishing (CMP) process includes a wetting agent, a stripper additive that comprises at least one of: N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), sulfolane, and dimethylformamide (DMF), and an oxidizer additive comprising at least one of: hydrogen peroxide (H2O2), ammonium persulfate ((NH4)2S2O8), peroxymonosulfuric acid (H2SO5), ozone (O3) in de-ionized water, and sulfuric acid (H2SO4).
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: September 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD
    Inventors: Kuo-Yin Lin, Wen-Kuei Liu, Teng-Chun Tsai, Shen-Nan Lee, Kuo-Cheng Lien, Chang-Sheng Lin, Yu-Wei Chou
  • Patent number: 10741392
    Abstract: A method includes forming a metal layer over a substrate; forming a dielectric layer over the metal layer; removing a first portion of the dielectric layer to expose a first portion of the metal layer, while a second portion of the dielectric layer remains on the metal layer; selectively forming a first inhibitor on the second portion of the dielectric layer, while the metal layer is free of coverage by the first inhibitor; and selectively depositing a first hard mask on the exposed first portion of the metal layer, while the first inhibitor is free of coverage by the first hard mask.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: August 11, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Wei Su, Fu-Ting Yen, Teng-Chun Tsai
  • Patent number: 10727076
    Abstract: The present disclosure provides a method for planarizing a metal-dielectric surface. The method includes: providing a slurry to a first metal-dielectric surface, wherein the first metal-dielectric surface comprises a silicon oxide portion and a metal portion, and wherein the slurry comprises a ceria compound; and performing a chemical mechanical polish (CMP) operation using the slurry to simultaneously remove the silicon oxide portion and the metal portion. The present disclosure also provides a method for planarizing a metal-dielectric surface and a method for manufacturing a semiconductor.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: July 28, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chun-Hung Liao, Chung-Wei Hsu, Tsung-Ling Tsai, Chen-Hao Wu, Chu-An Lee, Shen-Nan Lee, Teng-Chun Tsai, Huang-Lin Chao
  • Patent number: 10727065
    Abstract: A method includes forming a gate stack and an interlayer dielectric (ILD) over a substrate, wherein the interlayer dielectric is adjacent to the gate stack; forming an inhibitor covering the interlayer dielectric such that the gate stack is exposed from the inhibitor; performing a deposition process to form a conductive layer over the gate stack until the conductive layer starts to form on the inhibitor, in which the deposition process has a deposition selectivity for the gate stack with respect to the inhibitor; and performing an etching process to remove a portion of the conductive layer over the inhibitor.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: July 28, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTRUING CO., LTD.
    Inventors: Chia-Wei Su, Fu-Ting Yen, Ting-Ting Chen, Teng-Chun Tsai
  • Patent number: 10714615
    Abstract: A method includes providing a semiconductor substrate having first and second regions that are doped with first and second dopants respectively. The first and second dopants are of opposite types. The method further includes epitaxially growing a first semiconductor layer that is doped with a third dopant. The first and third dopants are of opposite types. The method further includes depositing a dielectric hard mask (HM) layer over the first semiconductor layer; patterning the dielectric HM layer to have an opening over the first region; extending the opening towards the semiconductor substrate; and epitaxially growing a second semiconductor layer in the opening. The second semiconductor layer is doped with a fourth dopant. The first and fourth dopants are of a same type. The method further includes removing the dielectric HM layer; and performing a first CMP process to planarize both the first and second semiconductor layers.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: July 14, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Yin Lin, Teng-Chun Tsai, Po-Yu Lin
  • Patent number: 10714395
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate having adjacent first and second fins protruding from the substrate, an isolation feature between and adjacent to the first fin and the second fin, and a fin isolation structure between the first fin and the second fin. The fin isolation structure includes a first insulating layer partially embedded in the isolation feature, a second insulating layer having sidewall surfaces and a bottom surface that are covered by the first insulating layer, a first capping layer covering the second insulating layer and having sidewall surfaces that are covered by the first insulating layer, and a second capping layer having sidewall surfaces and a bottom surface that are covered by the first capping layer.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: July 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chu-An Lee, Chen-Hao Wu, Peng-Chung Jangjian, Chun-Wen Hsiao, Teng-Chun Tsai, Huang-Lin Chao
  • Patent number: 10707114
    Abstract: According to an exemplary embodiment, a method of forming an isolation layer is provided. The method includes the following operations: providing a substrate; providing a vertical structure having a first layer over the substrate; providing a first interlayer dielectric over the first layer; performing CMP on the first interlayer dielectric; and etching back the first interlayer dielectric and the first layer to form the isolation layer corresponding to a source of the vertical structure.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: July 7, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Teng-Chun Tsai, Bing-Hung Chen, Chien-Hsun Wang, Cheng-Tung Lin, Chih-Tang Peng, De-Fang Chen, Huan-Just Lin, Li-Ting Wang, Yung-Cheng Lu
  • Publication number: 20200176264
    Abstract: A wafer is polished by performing a chemical reaction to change a property of a first portion of a material layer on the wafer using a first chemical substance. A first rinse is performed to remove the first chemical substance and retard the chemical reaction. A mechanical polishing process is then performed to remove the first portion of the material layer.
    Type: Application
    Filed: February 25, 2019
    Publication date: June 4, 2020
    Inventors: Shen-Nan LEE, Teng-Chun TSAI, Chu-An LEE, Chen-Hao WU, Chun-Hung LIAO, Huang-Lin CHAO
  • Publication number: 20200135890
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes device fins formed on a substrate; fill fins formed on the substrate and disposed among the device fins; and gate stacks formed on the device fins and the fill fins. The fill fins include a first dielectric material layer and a second dielectric material layer deposited on the first dielectric material layer. The first and second dielectric material layers are different from each other in composition.
    Type: Application
    Filed: December 30, 2019
    Publication date: April 30, 2020
    Inventors: Kuo-Cheng Chiang, Teng-Chun Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Publication number: 20200135486
    Abstract: The present disclosure provides a method for planarizing a metal-dielectric surface. The method includes: providing a slurry to a first metal-dielectric surface, wherein the first metal-dielectric surface comprises a silicon oxide portion and a metal portion, and wherein the slurry comprises a ceria compound; and performing a chemical mechanical polish (CMP) operation using the slurry to simultaneously remove the silicon oxide portion and the metal portion. The present disclosure also provides a method for planarizing a metal-dielectric surface and a method for manufacturing a semiconductor.
    Type: Application
    Filed: October 25, 2018
    Publication date: April 30, 2020
    Inventors: CHUN-HUNG LIAO, CHUNG-WEI HSU, TSUNG-LING TSAI, CHEN-HAO WU, CHU-AN LEE, SHEN-NAN LEE, TENG-CHUN TSAI, HUANG-LIN CHAO