Patents by Inventor Terence Yeo

Terence Yeo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120099204
    Abstract: Designs and manufacturing methods are provided for lighting components and systems with improved performance in luminous efficacy, total lumen output, product lifetime, and form factor through the use of optical composites with improved thermal management. Some embodiments also provide designs and manufacturing methods to minimize thermal warpage and increase the rigidity of optical films and sheets through improved balance of thermal stresses.
    Type: Application
    Filed: August 30, 2011
    Publication date: April 26, 2012
    Applicant: FUSION OPTIX, INC.
    Inventors: Timothy Kelly, Terence Yeo
  • Patent number: 8033706
    Abstract: In one embodiment of this invention, a lightguide comprises a low refractive index region disposed between light extracting region and a non-scattering region. In further embodiment of this invention, volumetric scattering lightguide comprises a low refractive index region disposed between a volumetric scattering region and a non-scattering region. In some embodiments, a light emitting device comprising a volumetric scattering lightguide can angularly filter light input into the edge of a volumetric scattering lightguide by controlling the refractive index of the low refractive index region relative to the refractive index of the non-scattering region to prevent direct illumination of the volumetric scattering region, provide a luminance uniformity greater than 70%, or improve the angular luminous intensity of the light emitting device.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: October 11, 2011
    Assignee: Fusion Optix, Inc.
    Inventors: Timothy Kelly, Zane Coleman, Terence Yeo
  • Patent number: 8033674
    Abstract: The present invention provides a polarization-sensitive light homogenizer and a backlight and display using the same. The homogenizer improves the spatial luminance and color uniformity, increases the luminance in a direction normal to the homogenizer and provides increased luminance through polarized light recycling within the light homogenizer and backlight. In one embodiment, the homogenizer includes a polarization-sensitive anisotropic light-scattering (PDALS) region, a non-polarization-sensitive anisotropic light-scattering region, and a substantially non-scattering region. In a further embodiment, the non-scattering region is birefringent. The spatially non-uniform incident light flux from a backlight including one or more non-extended light emitting sources is scattered efficiently by the NPDASL region and is incident on the PDALS region which backscatters light orthogonal to the polarization state desired for efficient illumination of a liquid crystal display panel.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: October 11, 2011
    Assignee: Fusion Optix, Inc.
    Inventors: Zane Coleman, Terence Yeo, Timothy Kelly
  • Publication number: 20100321952
    Abstract: In one aspect, the present invention provides light emitting devices, including light fixtures and luminaires. In some embodiments, a light emitting device comprises at least one light source, a lightguide operable to receive light from the at least one light source at a first location on the lightguide, at least one light extraction region optically coupled to the lightguide and a substantially non-scattering region along a portion of the lightguide.
    Type: Application
    Filed: May 3, 2010
    Publication date: December 23, 2010
    Inventors: Zane Coleman, Peter Yi Yan Ngai, David Morin, Michael Trung Tran, Terence Yeo
  • Publication number: 20080094854
    Abstract: An enhanced electroluminescent sign containing a volumetric, anisotropic scattering element to control the angular spread of light from the sign and the spatial luminance uniformity of the sign. The anisotropic scattering element contains one or more regions of asymmetrically-shaped light scattering particles. The angular spread of light leaving a sign from a light emitting source can be efficiently controlled by using a thin, low cost, volumetric, anisotropic scattering elements to angularly and spatially distribute light, permitting the reduction in number of light sources, a reduction in power requirements, or a more tailored viewing angle.
    Type: Application
    Filed: December 14, 2007
    Publication date: April 24, 2008
    Applicant: FUSION OPTIX INC.
    Inventors: Zane Coleman, Terence Yeo
  • Publication number: 20080043490
    Abstract: A light guide containing substantially aligned non-spherical particles provides more efficient control of light scattering. One or more regions containing ellipsoidal particles may be used and the particle sizes may vary between 2 and 100 microns in the smaller dimension. The light scattering regions may be substantially orthogonal in their axis of alignment. Alternatively, one or more asymmetrically scattering films can be used in combination with a backlight light guide and a reflector to produce an efficient backlight system. The light guides may be manufactured by embossing, stamping, or compression molding a light guide in a suitable light guide material containing asymmetric particles substantially aligned in one direction. The light scattering light guide or non-scattering light guide may be used with one or more light sources, collimating films or symmetric or asymmetric scattering films.
    Type: Application
    Filed: August 31, 2007
    Publication date: February 21, 2008
    Applicant: FUSION OPTIX INC.
    Inventors: Zane Coleman, Terence Yeo
  • Publication number: 20070201246
    Abstract: A light transmitting diffusing sheet can be used in backlighting systems for liquid crystal displays (LCDs). Such displays are typically used in televisions, computer monitors, laptop computers and handheld devices such as mobile phones. Embodiments of the light diffusing sheets are suitable for use with both cold-cathode fluorescent (CCFL) and light emitting diode based backlighting systems. Desired light transmitting properties in the light transmitting diffusing sheet have been achieved by modifying both the volume and surface features of the sheet. Embodiments of this invention when used as part of the backlighting assembly for a LCD system results in improved brightness and controlled viewing angles. In one embodiment, substantially asymmetric particles in the volume of the sheet are combined with a ridged structure on one surface of the sheet.
    Type: Application
    Filed: February 27, 2007
    Publication date: August 30, 2007
    Applicant: FUSION OPTIX, INC.
    Inventors: Terence Yeo, Zane Coleman
  • Publication number: 20060290253
    Abstract: The present invention provides improved light diffusing plates and films that can be used in backlights to increase brightness, provide more control over the viewing angle, reduce thickness and the reduce the overall display cost. By using a volumetric, asymmetric scattering region within a diffuser plate or film, light can be preferentially scattered more in one direction than the other direction. In backlights where the illumination light sources are substantially linear arrays, a diffuser plate or film that scatters predominantly in the direction perpendicular to the linear array will have more efficient forward light throughput than one that scatters light in a symmetric light scattering profile. In addition, a light re-directing region such as an asymmetric scattering region can efficiently allow a light-emitting device to be direct lit and edge lit, simultaneously.
    Type: Application
    Filed: June 23, 2006
    Publication date: December 28, 2006
    Applicant: Fusion Optix, Inc.
    Inventors: Terence Yeo, Zane Coleman, Timothy Kelly
  • Publication number: 20060227546
    Abstract: An enhanced light fixture containing a volumetric, anisotropic diffuser to control the spatial luminance uniformity and angular spread of light from the light fixture is disclosed. The anisotropic diffuser provides increased spatial luminance uniformity and efficient control over the illuminance such that power reductions, reduced cost or reduced size may be achieved. The anisotropic diffuser contains one or more regions of asymmetrically shaped light scattering particles. The spread of illumination of light from a light emitting source can be efficiently controlled by using a thin, low cost, volumetric, asymmetric diffuser to direct the light in the desired direction. This allows the reduction in number of light sources, a reduction in power requirements, or a more tailored illumination. When the anisotropic diffuser is used in combination with a waveguide to extract light, the light is efficiently coupled out of the waveguide in a thin, planar surface.
    Type: Application
    Filed: November 17, 2005
    Publication date: October 12, 2006
    Inventors: Terence Yeo, Zane Coleman
  • Publication number: 20060215958
    Abstract: An enhanced electroluminescent sign containing a volumetric, anisotropic scattering element to control the angular spread of light from the sign and the spatial luminance uniformity of the sign. The anisotropic scattering element contains one or more regions of asymmetrically-shaped light scattering particles. The angular spread of light leaving a sign from a light emitting source can be efficiently controlled by using a thin, low cost, volumetric, anisotropic scattering elements to angularly and spatially distribute light, permitting the reduction in number of light sources, a reduction in power requirements, or a more tailored viewing angle.
    Type: Application
    Filed: November 17, 2005
    Publication date: September 28, 2006
    Inventors: Terence Yeo, Zane Coleman
  • Publication number: 20060066945
    Abstract: By using high and low refractive index materials, a planarized reflective-refractive Fresnel lens and a planarized refractive lenticular lens can be created. These flat screen components eliminate the need for an air-gap, thus reducing the screen thickness. Additionally, this allows for the screen to be manufactured on a roll-to-roll process that can significantly reduce the screen cost. By adding the capability of planarizing the elements, they can be combined in a final structure on a roll-to-roll process. Since the Fresnel lens can be combined with the lenticular lens before exposure of the black stripe region, the exposure of the black stripe region can account for any deviation from true collimation or non-normal angle of incidence of the light path in the projection system design.
    Type: Application
    Filed: September 13, 2005
    Publication date: March 30, 2006
    Inventors: Terence Yeo, Zane Coleman
  • Publication number: 20060056021
    Abstract: A multi-region light scattering element with the optical characteristics of low speckle, high resolution high contrast, and high gain when used as an imaging element without any resulting loss of transmission or brightness with viewing angle. The multi-region light scattering element contains at least one region asymmetrically shaped light scattering features that are separated from a second light scattering region by a non-scattering region. In one embodiment, one or more of the regions contains particles that are asymmetrically shaped that improve the optical performance. In one embodiment, asymmetric particles are located in two regions separated by a non-scattering region with the particles within each region substantially aligned along an axis and the two axes are substantially perpendicular to each other. Methods for production of the screen element are also described.
    Type: Application
    Filed: August 4, 2005
    Publication date: March 16, 2006
    Inventors: Terence Yeo, Zane Coleman
  • Publication number: 20060056166
    Abstract: The present invention provides an improved light guide with inherently more flexibility for display system designers and higher optical efficiency. By using a light guide containing substantially aligned non-spherical particles, more efficient control of the light scattering can be achieved. One or more regions containing ellipsoidal particles may be used and the particle sizes may vary between 2 and 100 microns in the smaller dimension. The light scattering regions may be substantially orthogonal in their axis of alignment. Alternatively, one or more asymmetrically scattering films can be used in combination with a backlight light guide and a reflector to produce an efficient backlight system. The light guides may be manufactured by embossing, stamping, or compression molding a light guide in a suitable light guide material containing asymmetric particles substantially aligned in one direction.
    Type: Application
    Filed: September 9, 2005
    Publication date: March 16, 2006
    Inventors: Terence Yeo, Zane Coleman
  • Publication number: 20060056022
    Abstract: An imaging material has been developed which provides improved image contrast, increased gain and increased viewing angle. A method for production of the screen element is also described. The imaging material of the invention includes a refractive optical element which redirects incident light along a desired axis, a light transmissive focusing region which diffuses the light along the desired axis, and a controlled light-transmissive region which controls backscatter and increases contrast. The refractive optical element desirably includes an active surface such as a lenticular array embossed thereon which serves to redirect incident light as desired. The focusing region desirably is made of a matrix material having a refractive index n1, having dispersed throughout the matrix asymmetric micro-bodies that have a refractive index n2 different from n1. The controlled light-transmissive region may desirably comprise an alternating black stripe and transparent region.
    Type: Application
    Filed: August 10, 2005
    Publication date: March 16, 2006
    Inventors: Terence Yeo, Zane Coleman
  • Patent number: D663056
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: July 3, 2012
    Inventors: Matthew Sherman, David Morin, Timothy Kelly, Terence Yeo