Patents by Inventor Terrel L. Morris

Terrel L. Morris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220224642
    Abstract: A method includes: receiving a packet in an optical domain, the packet including a data payload and a routing header indicative of a routing sequence for the data payload; reading a first bit of the routing header to make a routing decision for the data payload; stripping the first bit of the routing header in the optical domain to generate an updated routing header; and routing the data payload and the updated routing header based on the routing decision.
    Type: Application
    Filed: January 13, 2021
    Publication date: July 14, 2022
    Inventors: MIR ASHKAN SEYEDI, TERREL L. MORRIS
  • Patent number: 10888011
    Abstract: A network packaging system can include a circuit board that includes a chip located substantially in a center of the board. A backplane is in communication with the chip and located along on a first edge of the circuit board. A plurality of connector ports are arranged along the perimeter of at least two other edges of the circuit board. A plurality of traces connects the plurality of connector ports to the chip. A support structure houses one or more circuit boards, with at least two sidewall surfaces of the support structure extending substantially orthogonal to and coextensive with each of the at least two edges of the circuit board. The support structure includes a plurality of apertures extending through the one or more surfaces spatially aligned with each of the plurality of connector ports.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: January 5, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventor: Terrel L Morris
  • Patent number: 10725242
    Abstract: One example includes an apparatus that includes a plurality of input/output (I/O) ports and a body portion. The plurality of I/O ports can be arranged at a plurality of peripheral surfaces of the body portion. The body portion includes a solid dielectric material having a substantially constant index of refraction. The body portion also includes parallel planar surfaces spaced apart by and bounded by the plurality of peripheral surfaces. The solid dielectric material in the body portion can be writable via a laser-writing process to form an optical waveguide extending between a set of the plurality of I/O ports.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: July 28, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Raymond G. Beausoleil, Marco Fiorentino, Jason Pelc, Charles M. Santori, Terrel L. Morris
  • Patent number: 10677995
    Abstract: One example includes an optical fiber interface. The interface includes a first substrate comprising a pair of opposing surfaces. The substrate includes an opening extending therethrough that defines an inner periphery. One surface of the opposing surfaces of the first substrate can be configured to be bonded to a given surface of a second substrate. The interface also includes a plurality of optical fibers secured to the other opposing surface of the first substrate and extending inwardly from a plurality of surfaces of the inner periphery at fixed locations to align the set of optical fibers to optical inputs/outputs (I/O) of an optical system chip that is coupled to the given surface of the second substrate and received through the opening.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: June 9, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Terrel L Morris, Raymond G Beausoleil, Jason Pelc, Marco Fiorentino, Charles M Santori, Michael W Cumbie
  • Patent number: 10534148
    Abstract: One example includes an optical interconnect device. The optical interconnect device includes a plurality of optical fiber ports coupled to a body portion. The optical interconnect device also includes a plurality of optical fibers that are secured within the body portion. A first portion of the plurality of optical fibers can extend from a first of the plurality of optical fiber ports to a second of the plurality of optical fiber ports, and a second portion of the plurality of optical fibers can extend from the first of the plurality of optical fiber ports to a third of the plurality of optical fiber ports.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: January 14, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Terrel L Morris, Raymond G Beausoleil
  • Publication number: 20190204507
    Abstract: One example includes an apparatus that includes a plurality of input/output (I/O) ports and a body portion. The plurality of I/O ports can be arranged at a plurality of peripheral surfaces of the body portion. The body portion includes a solid dielectric material having a substantially constant index of refraction. The body portion also includes parallel planar surfaces spaced apart by and bounded by the plurality of peripheral surfaces. The solid dielectric material in the body portion can be writable via a laser-writing process to form an optical waveguide extending between a set of the plurality of I/O ports.
    Type: Application
    Filed: March 11, 2019
    Publication date: July 4, 2019
    Inventors: Raymond G. Beausoleil, Marco Fiorentino, Jason Pelc, Charles M. Santori, Terrel L. Morris
  • Patent number: 10261256
    Abstract: One example includes an apparatus that includes a plurality of input/output (I/O) ports and a body portion. The plurality of I/O ports can be arranged at a plurality of peripheral surfaces of the body portion. The body portion includes a solid dielectric material having a substantially constant index of refraction. The body portion also includes parallel planar surfaces spaced apart by and bounded by the plurality of peripheral surfaces. The solid dielectric material in the body portion can be writable via a laser-writing process to form an optical waveguide extending between a set of the plurality of I/O ports.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: April 16, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Raymond G Beausoleil, Marco Fiorentino, Jason Pelc, Charles M Santori, Terrel L Morris
  • Patent number: 10088634
    Abstract: One example includes an optical port-shuffling module. The module includes a plurality of inputs to receive a respective plurality of optical signals. The module also includes a plurality of outputs to provide the respective plurality of optical signals from the optical port-shuffling module. The module further includes a plurality of total-internal-reflection (TIR) mirrors arranged in optical paths of at least a portion of the plurality of optical signals to reflect the at least a portion of the plurality of optical signals to at least a portion of the plurality of outputs to shuffle the plurality of optical signals between the plurality of inputs and the plurality of outputs.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: October 2, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Jason Pelc, Charles M Santori, Marco Fiorentino, Sr., Raymond G Beausoleil, Terrel L Morris
  • Publication number: 20180024292
    Abstract: One example includes an apparatus that includes a plurality of input/output (I/O) ports and a body portion. The plurality of I/O ports can be arranged at a plurality of peripheral surfaces of the body portion. The body portion includes a solid dielectric material having a substantially constant index of refraction. The body portion also includes parallel planar surfaces spaced apart by and bounded by the plurality of peripheral surfaces. The solid dielectric material in the body portion can be writable via a laser-writing process to form an optical waveguide extending between a set of the plurality of I/O ports.
    Type: Application
    Filed: January 28, 2015
    Publication date: January 25, 2018
    Inventors: Raymond G BEAUSOLEIL, Marco FIORENTINO, Jason PELC, Charles M SANTORI, Terrel L MORRIS
  • Publication number: 20170336569
    Abstract: One example includes an optical port-shuffling module. The module includes a plurality of inputs to receive a respective plurality of optical signals. The module also includes a plurality of outputs to provide the respective plurality of optical signals from the optical port-shuffling module. The module further includes a plurality of total-internal-reflection (TIR) mirrors arranged in optical paths of at least a portion of the plurality of optical signals to reflect the at least a portion of the plurality of optical signals to at least a portion of the plurality of outputs to shuffle the plurality of optical signals between the plurality of inputs and the plurality of outputs.
    Type: Application
    Filed: October 23, 2014
    Publication date: November 23, 2017
    Inventors: Jason PELC, Charles M SANTORI, Marco FIORENTINO, Sr., Raymond G BEAUSOLEIL, Terrel L MORRIS
  • Publication number: 20170329094
    Abstract: One example includes an optical interconnect device. The optical interconnect device includes a plurality of optical fiber ports coupled to a body portion. The optical interconnect device also includes a plurality of optical fibers that are secured within the body portion. A first portion of the plurality of optical fibers can extend from a first of the plurality of optical fiber ports to a second of the plurality of optical fiber ports, and a second portion of the plurality of optical fibers can extend from the first of the plurality of optical fiber ports to a third of the plurality of optical fiber ports.
    Type: Application
    Filed: October 24, 2014
    Publication date: November 16, 2017
    Inventors: Terrel L MORRIS, Raymond G BEAUSOLEIL
  • Publication number: 20170315298
    Abstract: One example includes an optical fiber interface. The interface includes a first substrate comprising a pair of opposing surfaces. The substrate includes an opening extending therethrough that defines an inner periphery. One surface of the opposing surfaces of the first substrate can be configured to be bonded to a given surface of a second substrate. The interface also includes a plurality of optical fibers secured to the other opposing surface of the first substrate and extending inwardly from a plurality of surfaces of the inner periphery at fixed locations to align the set of optical fibers to optical inputs/outputs (I/O) of an optical system chip that is coupled to the given surface of the second substrate and received through the opening.
    Type: Application
    Filed: October 23, 2014
    Publication date: November 2, 2017
    Applicant: Hewlett Packard Enterprise Development LP
    Inventors: Terrel L MORRIS, Raymond G BEAUSOLEIL, Jason PELC, SR., Marco FIORENTINO, Charles M SANTORI, Michael W CUMBIE
  • Publication number: 20170245388
    Abstract: A network packaging system can include a circuit board that includes a chip located substantially in a center of the board. A backplane is in communication with the chip and located along on a first edge of the circuit board. A plurality of connector ports are arranged along the perimeter of at least two other edges of the circuit board. A plurality of traces connects the plurality of connector ports to the chip. A support structure houses one or more circuit boards, with at least two sidewall surfaces of the support structure extending substantially orthogonal to and coextensive with each of the at least two edges of the circuit board. The support structure includes a plurality of apertures extending through the one or more surfaces spatially aligned with each of the plurality of connector ports.
    Type: Application
    Filed: October 27, 2014
    Publication date: August 24, 2017
    Inventor: Terrel L. MORRIS
  • Patent number: 9494740
    Abstract: Methods and apparatus for optical architectures are disclosed. An optical architecture includes first and second riser cards and first and second components carried by the first and second riser cards respectively. The optical architecture also includes a first matrix to fan-out a multi-bit optical input signal into first and second outbound signals, and first and second fiber optic cables to carry the first and second outbound signals to the first and second riser cards, respectively.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: November 15, 2016
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Terrel L. Morris, Michael Renne Ty Tan
  • Patent number: 9142938
    Abstract: An array of light beam emitter sections comprises: a substrate having a surface divided into an array of sections; and a grouping of light emitters disposed at each surface section and configured to emit light beams at different emission angles with respect to the surface. Also disclosed is apparatus for establishing optical communication channels between the array of light beam emitter sections and an array of light detectors. Further disclosed is a method of establishing optical communication channels between the array of light emitter sections and the array of light detectors by mapping at least one light emitter of each grouping with a light detector of the detector array to establish optical communication channels between the arrays based on the mappings.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: September 22, 2015
    Assignee: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Terrel L. Morris, David Martin Fenwick, Richard John Luebs, Duane A. Wegher, Jeffry D. Yetter
  • Publication number: 20140348465
    Abstract: Methods and apparatus for optical architectures are disclosed. An optical architecture includes first and second riser cards and first and second components carried by the first and second riser cards respectively. The optical architecture also includes a first matrix to fan-out a multi-bit optical input signal into first and second outbound signals, and first and second fiber optic cables to carry the first and second outbound signals to the first and second riser cards, respectively.
    Type: Application
    Filed: January 31, 2012
    Publication date: November 27, 2014
    Inventors: Terrel L. Morris, Michael Renne Ty Tan
  • Publication number: 20140153868
    Abstract: Systems are provided having, for example, at least first and second processing units, an optical bus system coupled to the at least first and second processing units, and an optical bus controller coupled to the optical bus system. The optical bus system includes a plurality of optical switches and each optical switch includes, for example, at least a first switch state for directing light in at least a first direction and a second switch state for directing light in at least a second direction. Methods for optical bus communication are also provided.
    Type: Application
    Filed: February 6, 2014
    Publication date: June 5, 2014
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: David Martin Fenwick, Richard J. Luebs, Terrel L. Morris, Duane A. Wegher, Jeffrey D. Yetter
  • Patent number: 8385698
    Abstract: A controllable optical ring resonator, a photonic system and a method of controlling an optical ring resonator employ control electrodes periodically spaced apart along a closed loop optical path of an optical waveguide. The controllable optical ring resonator includes the optical waveguide and a plurality of the periodically spaced control electrodes. The photonic system includes an input optical waveguide segment and the controllable optical ring resonator adjacent and optically coupled to the segment. The method includes providing the plurality of periodically spaced control electrodes, providing an optical signal within the optical path, and addressing one or more of the control electrodes to interact with the optical signal within the optical path.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: February 26, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Terrel L. Morris, Michael R. Tan, Wei Wu, Shih-Yuan Wang
  • Patent number: 8059927
    Abstract: In one embodiment, an assembly having a first board, a second board, a fiber bundle, and at least one movable stage is provided. The fiber bundle has a first end and a second end, and the first end of the fiber bundle is attached to the first board first face. The movable stage has a second optical array provided thereon or therein. The movable stage is disposed on the second board such that the at least one motor steers the movable stage. The movable stage is steered such that the second optical array is aligned with the second end of the fiber bundle in a desired manner.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: November 15, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: David Martin Fenwick, Richard John Luebs, Terrel L. Morris, Duane A. Wegher, Jeffrey D. Yetter
  • Patent number: 8054531
    Abstract: Various embodiments of the present invention are directed to micro-electro-mechanical systems and photonic interconnects employing micro-electro-mechanical systems. One micro-electro-mechanical system embodiment of the present invention includes a lens structure and an actuator. The lens structure includes a substantially transparent membrane having a flexible, curved surface, and a reservoir holding fluid that is fluidly coupled to the membrane. The actuator system is operably coupled to the reservoir in order to exert pressure on the fluid to change the curvature of the membrane and the focal point of the lens structure.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: November 8, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Shih-Yuan Wang, R. Stanley Williams, Terrel L. Morris, Mihail Sigalas