Patents by Inventor Teruhisa Ikuta

Teruhisa Ikuta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10847610
    Abstract: In a semiconductor device including first and second conductive plates (FFPs) formed by being stacked in layer, the first conductive plate and the second conductive plate include linear regions elongated to face each other along a longitudinal direction in which a length with which source region and drain region elongated in parallel face each other is longest, and are elongated in a short-side direction orthogonal to the longitudinal direction. Here, high voltage wiring of either one of source wiring and drain wiring is elongated in the short-side direction to intersect the linear regions of the first conductive plate and the second conductive plate, and low voltage wiring of the other one of source wiring and drain wiring is elongated in the short-side direction to intersect at least one linear region of the first conductive plate or the second conductive plate.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: November 24, 2020
    Assignee: PANASONIC SEMICONDUCTOR SOLUTIONS CO., LTD.
    Inventors: Teruhisa Ikuta, Hiroshi Sakurai, Satoru Kanai
  • Patent number: 10756172
    Abstract: A semiconductor device having a silicon-on-insulator (SOI) structure in which a source region and a drain region extend along a longitudinal direction that is a direction along a longer side of sides facing each other, and are disposed side-by-side in a lateral direction that is a direction perpendicular to the longitudinal direction. In a plan view, a body region extends along the longitudinal direction and is surrounded by a drift region and an insulating region. A space between the insulating region and the body region in the lateral direction becomes narrower from the center to the end of the body region in the longitudinal direction. This achieves high breakdown voltage in the semiconductor device.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: August 25, 2020
    Assignee: PANASONIC SEMICONDUCTOR SOLUTIONS CO., LTD.
    Inventors: Teruhisa Ikuta, Hiroshi Sakurai, Satoru Kanai
  • Publication number: 20190355809
    Abstract: In a semiconductor device including first and second conductive plates (FFPs) formed by being stacked in layer, the first conductive plate and the second conductive plate include linear regions elongated to face each other along a longitudinal direction in which a length with which source region and drain region elongated in parallel face each other is longest, and are elongated in a short-side direction orthogonal to the longitudinal direction. Here, high voltage wiring of either one of source wiring and drain wiring is elongated in the short-side direction to intersect the linear regions of the first conductive plate and the second conductive plate, and low voltage wiring of the other one of source wiring and drain wiring is elongated in the short-side direction to intersect at least one linear region of the first conductive plate or the second conductive plate.
    Type: Application
    Filed: August 1, 2019
    Publication date: November 21, 2019
    Inventors: Teruhisa IKUTA, Hiroshi SAKURAI, Satoru KANAI
  • Publication number: 20190172908
    Abstract: A semiconductor device having a silicon-on-insulator (SOI) structure in which a source region and a drain region extend along a longitudinal direction that is a direction along a longer side of sides facing each other, and are disposed side-by-side in a lateral direction that is a direction perpendicular to the longitudinal direction. In a plan view, a body region extends along the longitudinal direction and is surrounded by a drift region and an insulating region. A space between the insulating region and the body region in the lateral direction becomes narrower from the center to the end of the body region in the longitudinal direction. This achieves high breakdown voltage in the semiconductor device.
    Type: Application
    Filed: February 12, 2019
    Publication date: June 6, 2019
    Inventors: Teruhisa IKUTA, Hiroshi SAKURAI, Satoru KANAI
  • Patent number: 9324861
    Abstract: A semiconductor device has on a semiconductor layer: a gate insulating film formed, extending from a second emitter region toward a buffer region beyond a first body region, and covering part of a drift region; and a gate electrode. The second emitter region contacts a first emitter region, and extends laterally to a portion under the gate electrode so as to be longer than a diffusion depth of the second emitter region and not beyond a lateral length of the first body region under the gate electrode, in an area from an end portion of the first emitter region closer to the gate electrode to a region under the gate electrode.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: April 26, 2016
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Teruhisa Ikuta, Akira Fukumoto
  • Publication number: 20150162440
    Abstract: A semiconductor device has on a semiconductor layer: a gate insulating film formed, extending from a second emitter region toward a buffer region beyond a first body region, and covering part of a drift region; and a gate electrode. The second emitter region contacts a first emitter region, and extends laterally to a portion under the gate electrode so as to be longer than a diffusion depth of the second emitter region and not beyond a lateral length of the first body region under the gate electrode, in an area from an end portion of the first emitter region closer to the gate electrode to a region under the gate electrode.
    Type: Application
    Filed: January 30, 2015
    Publication date: June 11, 2015
    Inventors: Teruhisa IKUTA, Akira FUKUMOTO
  • Patent number: 8823106
    Abstract: The present invention mainly provides an ESD protective element which can be built in high voltage semiconductor integrated circuit devices without increasing the chip area. An ESD protective element according to one embodiment has a construction comprising a semiconductor layer, a first region of a first conduction type formed in the semiconductor layer, a first region of a second conduction type formed in the semiconductor layer away from the first region of the first conduction type, a second region of the second conduction type formed in the first region of the second conduction type and has a higher impurity concentration than it, and a second region of the first conduction type formed in the second region of the second conduction type and has a high impurity concentration. The first and second regions of the second conduction type are in an electrically floating state.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: September 2, 2014
    Assignee: Panasonic Corporation
    Inventors: Teruhisa Ikuta, Yoshinobu Satou
  • Patent number: 8304858
    Abstract: In a semiconductor device of the present invention, a first base region 16 is extended to a part under a gate electrode 7 while having a vertical concentration profile of an impurity that increases from the surface of a semiconductor layer 3 and becomes maximum under an emitter region 5, and the length in the lateral direction from a point where the impurity concentration becomes maximum located under an end of the gate electrode 7 to the boundary with a second base region 15 is not smaller than the length in the vertical direction from the point where the impurity concentration becomes maximum to the boundary with the second base region 15.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: November 6, 2012
    Assignee: Panasonic Corporation
    Inventors: Teruhisa Ikuta, Yoshinobu Sato
  • Patent number: 8093131
    Abstract: In a semiconductor device of the present invention, a first base region 16 is extended to a part under a gate electrode 7 while having a vertical concentration profile of an impurity that increases from the surface of a semiconductor layer 3 and becomes maximum under an emitter region 5, and the length in the lateral direction from a point where the impurity concentration becomes maximum located under an end of the gate electrode 7 to the boundary with a second base region 15 is not smaller than the length in the vertical direction from the point where the impurity concentration becomes maximum to the boundary with the second base region 15.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: January 10, 2012
    Assignee: Panasonic Corporation
    Inventors: Teruhisa Ikuta, Yoshinobu Sato
  • Publication number: 20110169046
    Abstract: In a semiconductor device of the present invention, a first base region 16 is extended to a part under a gate electrode 7 while having a vertical concentration profile of an impurity that increases from the surface of a semiconductor layer 3 and becomes maximum under an emitter region 5, and the length in the lateral direction from a point where the impurity concentration becomes maximum located under an end of the gate electrode 7 to the boundary with a second base region 15 is not smaller than the length in the vertical direction from the point where the impurity concentration becomes maximum to the boundary with the second base region 15.
    Type: Application
    Filed: March 24, 2011
    Publication date: July 14, 2011
    Applicant: Panasonic Corporation
    Inventors: Teruhisa Ikuta, Yoshinobu Sato
  • Publication number: 20110169092
    Abstract: The present invention mainly provides an ESD protective element which can be built in high voltage semiconductor integrated circuit devices without increasing the chip area. An ESD protective element according to one embodiment has a construction comprising a semiconductor layer, a first region of a first conduction type formed in the semiconductor layer, a first region of a second conduction type formed in the semiconductor layer away from the first region of the first conduction type, a second region of the second conduction type formed in the first region of the second conduction type and has a higher impurity concentration than it, and a second region of the first conduction type formed in the second region of the second conduction type and has a high impurity concentration. The first and second regions of the second conduction type are in an electrically floating state.
    Type: Application
    Filed: November 8, 2010
    Publication date: July 14, 2011
    Inventors: Teruhisa IKUTA, Yoshinobu Satou
  • Patent number: 7973361
    Abstract: A high breakdown voltage semiconductor device is formed using an SOI substrate comprising a support substrate, an insulating film, and an active layer. The high breakdown voltage semiconductor device comprises an N-type well region and a P-type drain offset region formed on the active layer, a P-type source region formed on the well region, a P-type drain region formed on the drain offset region, a gate insulating film formed in at least a region interposed between the source region and the drain offset region of the active layer, and a gate electrode formed on the gate insulating film. The device further comprises an N-type deep well region formed under the drain offset region. A concentration peak of N-type impurity for formation of the deep well region is located deeper than a concentration peak of P-type impurity for formation of the drain offset region.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: July 5, 2011
    Assignee: Panasonic Corporation
    Inventors: Yoshinobu Sato, Hiroyoshi Ogura, Hisao Ichijo, Teruhisa Ikuta, Toru Terashita
  • Patent number: 7944022
    Abstract: In a semiconductor device of the present invention, a first base region 16 is extended to a part under a gate electrode 7 while having a vertical concentration profile of an impurity that increases from the surface of a semiconductor layer 3 and becomes maximum under an emitter region 5, and the length in the lateral direction from a point where the impurity concentration becomes maximum located under an end of the gate electrode 7 to the boundary with a second base region 15 is not smaller than the length in the vertical direction from the point where the impurity concentration becomes maximum to the boundary with the second base region 15.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: May 17, 2011
    Assignee: Panasonic Corporation
    Inventors: Teruhisa Ikuta, Yoshinobu Sato
  • Publication number: 20110081751
    Abstract: In a semiconductor device of the present invention, a first base region 16 is extended to a part under a gate electrode 7 while having a vertical concentration profile of an impurity that increases from the surface of a semiconductor layer 3 and becomes maximum under an emitter region 5, and the length in the lateral direction from a point where the impurity concentration becomes maximum located under an end of the gate electrode 7 to the boundary with a second base region 15 is not smaller than the length in the vertical direction from the point where the impurity concentration becomes maximum to the boundary with the second base region 15.
    Type: Application
    Filed: December 9, 2010
    Publication date: April 7, 2011
    Applicant: Panasonic Corporation
    Inventors: Teruhisa IKUTA, Yoshinobu Sato
  • Publication number: 20100213509
    Abstract: In a semiconductor device of the present invention, a first base region 16 is extended to a part under a gate electrode 7 while having a vertical concentration profile of an impurity that increases from the surface of a semiconductor layer 3 and becomes maximum under an emitter region 5, and the length in the lateral direction from a point where the impurity concentration becomes maximum located under an end of the gate electrode 7 to the boundary with a second base region 15 is not smaller than the length in the vertical direction from the point where the impurity concentration becomes maximum to the boundary with the second base region 15.
    Type: Application
    Filed: April 28, 2010
    Publication date: August 26, 2010
    Applicant: Panasonic Corporation
    Inventors: Teruhisa Ikuta, Yoshinobu Sato
  • Patent number: 7719086
    Abstract: In a semiconductor device of the present invention, a first base region 16 is extended to a part under a gate electrode 7 while having a vertical concentration profile of an impurity that increases from the surface of a semiconductor layer 3 and becomes maximum under an emitter region 5, and the length in the lateral direction from a point where the impurity concentration becomes maximum located under an end of the gate electrode 7 to the boundary with a second base region 15 is not smaller than the length in the vertical direction from the point where the impurity concentration becomes maximum to the boundary with the second base region 15.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: May 18, 2010
    Assignee: Panasonic Corporation
    Inventors: Teruhisa Ikuta, Yoshinobu Sato
  • Patent number: 7485972
    Abstract: Provided is a semiconductor device which includes a conductive bonding pad formed on a semiconductor substrate of the first conduction type via an insulating film and a diffusion layer of the second conduction type formed on a surface of the semiconductor substrate under the bonding pad. Characteristics do not deteriorate even when a breakdown occurs during wire bonding.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: February 3, 2009
    Assignee: Panasonic Corporation
    Inventors: Teruhisa Ikuta, Hiroyoshi Ogura, Yoshinobu Sato, Toru Terashita, Hisao Ichijo
  • Patent number: 7408234
    Abstract: An object of the present invention is to provide a semiconductor device that is able to realize a low on-resistance maintaining a high drain-to-source breakdown voltage, and a method for manufacturing thereof, the present invention including: a supporting substrate; a semiconductor layer having a P? type active region that is formed on the supporting substrate, interposing a buried oxide film between the semiconductor layer and the supporting substrate; and a gate electrode that is formed on the semiconductor layer, interposing a gate oxide film and a part of a LOCOS film between the gate electrode and the semiconductor layer, wherein the P? type active region has: an N+ type source region; a P type body region; a P+ type back gate contact region; an N type drain offset region; an N+ type drain contact region; and an N type drain buffer region that is formed in a limited region between the N type drain offset region and the P type body region, and the N type drain buffer region is in contact with a source sid
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: August 5, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hisao Ichijo, Hiroyoshi Ogura, Yoshinobu Sato, Teruhisa Ikuta
  • Publication number: 20080135972
    Abstract: In a semiconductor device of the present invention, a first base region 16 is extended to a part under a gate electrode 7 while having a vertical concentration profile of an impurity that increases from the surface of a semiconductor layer 3 and becomes maximum under an emitter region 5, and the length in the lateral direction from a point where the impurity concentration becomes maximum located under an end of the gate electrode 7 to the boundary with a second base region is is not smaller than the length in the vertical direction from the point where the impurity concentration becomes maximum to the boundary with the second base region 15.
    Type: Application
    Filed: November 21, 2007
    Publication date: June 12, 2008
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Teruhisa Ikuta, Yoshinobu Sato
  • Patent number: 7342283
    Abstract: An object of the present invention is to provide a semiconductor device which enables to reduce the device area, while securing the breakdown voltage between the drain and the source of each MOS transistor for the semiconductor device including plural MOS transistors, which are arrayed adjacently each other, with different types of channel conductivity.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: March 11, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hisao Ichijo, Hiroyoshi Ogura, Yoshinobu Sato, Teruhisa Ikuta, Toru Terashita