Patents by Inventor Terukazu Naruse

Terukazu Naruse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7428355
    Abstract: An optical device enabling reducing device scale is constituted by M circulators (11a, 11b), (M being a natural number), a waveguide-type diffraction grating (12) including M first input/output waveguides (121a, 121b) formed at its one end and M×N second input/output waveguides (125a-1 to 125a-N and 125b-1 to 125b-N) formed at the other end, (N being a natural number), and paths from the M circulators being connected to the M first input/output waveguides; and N reflection-type optical switches (13-1 to 13-N) each for reflecting the optical paths for M adjacent waveguides out of the M×N second input/output waveguides(125a-1 to 125a-N and 125b-1 to 125b-N) and for switching over the returning-destination waveguide respectively, wherein the M circulators, the waveguide-type diffraction grating and N reflection-type optical switches are arranged in cascade. Consequently, the optical device can function preferably also as a wavelength selective optical switch available in a WDM transmission system.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: September 23, 2008
    Assignee: Fujitsu Limited
    Inventors: Koji Terada, Haruhiko Tabuchi, Kohei Shibata, Terukazu Naruse
  • Patent number: 7400793
    Abstract: An optical device used, for example, in an add/drop multiplexer, a dynamic gain equalizer or a optical power monitor. The optical device includes (a) a substrate; (b) a first slab waveguide formed on the substrate; (c) channel waveguides of differing lengths formed on the substrate, light output from the first slab waveguide being input to the channel waveguides; and (d) a second slab waveguide formed on the substrate, light output from the channel waveguides being input to the second slab waveguide. An end face of the second slab waveguide shares a face with an end face of the substrate. The optical device has low loss characteristics.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: July 15, 2008
    Assignee: Fujitsu Limited
    Inventors: Haruhiko Tabuchi, Terukazu Naruse, Koji Terada, Kohei Shibata
  • Publication number: 20080138007
    Abstract: An optical waveguide contains a core layer in which light is transferred, and a cladding layer that clads the core layer. The core layer has an inclined end surface across a direction where the core layer extends. The inclined end surface reflects light from the core layer to outside or light from the outside to the core layer. The cladding layer has an end portion that extends to the inclined surface of the core layer. The cladding layer includes a system that prevents an adhesive agent from being flown out.
    Type: Application
    Filed: November 27, 2007
    Publication date: June 12, 2008
    Applicant: SONY CORPORATION
    Inventors: Miwa Okubo, Takahiro Arakida, Hidehiko Nakata, Terukazu Naruse, Momoko Eguchi
  • Patent number: 7386206
    Abstract: An optical device used, for example, in an add/drop multiplexer, a dynamic gain equalizer or a optical power monitor. The optical device includes (a) a substrate; (b) a first slab waveguide formed on the substrate; (c) channel waveguides of differing lengths formed on the substrate, light output from the first slab waveguide being input to the channel waveguides; and (d) a second slab waveguide formed on the substrate, light output from the channel waveguides being input to the second slab waveguide. An end face of the second slab waveguide shares a face with an end face of the substrate. The optical device has low loss characteristics.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: June 10, 2008
    Assignee: Fujitsu Limited
    Inventors: Haruhiko Tabuchi, Terukazu Naruse, Koji Terada, Kohei Shibata
  • Patent number: 7373063
    Abstract: An optical waveguide module has a planar type optical waveguide having at least one core, an optical fiber for connecting with the core of the optical waveguide optically, and an optical element for connecting the core of the optical waveguide optically. The optical waveguide includes a groove for allowing an optical fiber to be inserted thereinto and aligning the optical fiber with the core to connect the optical fiber and the core optically. A first edge of the optical waveguide, which traverses the core, is tapered and an edge of the core, which is exposed in the first edge of the optical waveguide, is formed as a reflection surface. A planar type optical element is mounted as the optical element at a position that is opposite to the reflection surface to connect the planar type optical element with the core optically through the reflection surface.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: May 13, 2008
    Assignee: Sony Corporation
    Inventors: Hidehiko Nakata, Takahiro Arakida, Terukazu Naruse, Miwa Okubo, Kazuyoshi Yamada, Momoko Eguchi
  • Publication number: 20070258678
    Abstract: An optical device enabling reducing device scale is constituted by M circulators (11a, 11b), (M being a natural number), a waveguide-type diffraction grating (12) including M first input/output waveguides (121a, 121b) formed at its one end and M×N second input/output waveguides (125a-1 to 125a-N and 125b-1 to 125b-N) formed at the other end, (N being a natural number), and paths from the M circulators being connected to the M first input/output waveguides; and N reflection-type optical switches (13-1 to 13-N) each for reflecting the optical paths for M adjacent waveguides out of the M×N second input/output waveguides(125a-1 to 125a-N and 125b-1 to 125b-N) and for switching over the returning-destination waveguide respectively, wherein the M circulators, the waveguide-type diffraction grating and N reflection-type optical switches are arranged in cascade. Consequently, the optical device can function preferably also as a wavelength selective optical switch available in a WDM transmission system.
    Type: Application
    Filed: May 23, 2007
    Publication date: November 8, 2007
    Applicant: FUJITSU LIMITED
    Inventors: Koji TERADA, Haruhiko TABUCHI, Kohei SHIBATA, Terukazu NARUSE
  • Patent number: 7239770
    Abstract: An optical device enabling reducing device scale is constituted by M circulators (11a, 11b), (M being a natural number), a waveguide-type diffraction grating (12) including M first input/output waveguides (121a, 121b) formed at its one end and M×N second input/output waveguides (125a-1 to 125a-N and 125b-1 to 125b-N) formed at the other end, (N being a natural number), and paths from the M circulators being connected to the M first input/output waveguides; and N reflection-type optical switches (13-1 to 13-N) each for reflecting the optical paths for M adjacent waveguides out of the M×N second input/output waveguides (125a-1 to 125a-N and 125b-1 to 125b-N) and for switching over the returning-destination waveguide respectively, wherein the M circulators, the waveguide-type diffraction grating and N reflection-type optical switches are arranged in cascade. Consequently, the optical device can function preferably also as a wavelength selective optical switch available in a WDM transmission system.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: July 3, 2007
    Assignee: Fujitsu Limited
    Inventors: Koji Terada, Haruhiko Tabuchi, Kohei Shibata, Terukazu Naruse
  • Publication number: 20070019902
    Abstract: An optical module has at least two optical elements mounted in parallel with each other. The module also has a first electrode pad which is formed between the paralleled optical elements and grounded to a ground potential and a second electrode pad which is arranged along a line that is intersected with a direction in which the optical elements are arranged, which faces the first electrode pad and is grounded to the ground potential. The module further has a conductive shield member which is connected to the first electrode pad and the second electrode pad and placed between electrical signal transmission paths each connected to the optical elements.
    Type: Application
    Filed: July 11, 2006
    Publication date: January 25, 2007
    Inventors: Hidehiko Nakata, Takahiro Arakida, Terukazu Naruse, Miwa Okubo, Kazuyoshi Yamada, Momoko Eguchi
  • Publication number: 20060274994
    Abstract: An optical device enabling reducing device scale is constituted by M circulators (11a, 11b), (M being a natural number), a waveguide-type diffraction grating (12) including M first input/output waveguides (121a, 121b) formed at its one end and M×N second input/output waveguides (125a-1 to 125a-N and 125b-1 to 125b-N) formed at the other end, (N being a natural number), and paths from the M circulators being connected to the M first input/output waveguides; and N reflection-type optical switches (13-1 to 13-N) each for reflecting the optical paths for M adjacent waveguides out of the M×N second input/output waveguides (125a-1 to 125a-N and 125b-1 to 125b-N) and for switching over the returning-destination waveguide respectively, wherein the M circulators, the waveguide-type diffraction grating and N reflection-type optical switches are arranged in cascade. Consequently, the optical device can function preferably also as a wavelength selective optical switch available in a WDM transmission system.
    Type: Application
    Filed: May 27, 2005
    Publication date: December 7, 2006
    Inventors: Koji Terada, Haruhiko Tabuchi, Kohei Shibata, Terukazu Naruse
  • Publication number: 20060257091
    Abstract: An optical device used, for example, in an add/drop multiplexer, a dynamic gain equalizer or a optical power monitor. The optical device includes (a) a substrate; (b) a first slab waveguide formed on the substrate; (c) channel waveguides of differing lengths formed on the substrate, light output from the first slab waveguide being input to the channel waveguides; and (d) a second slab waveguide formed on the substrate, light output from the channel waveguides being input to the second slab waveguide. An end face of the second slab waveguide shares a face with an end face of the substrate. The optical device has low loss characteristics.
    Type: Application
    Filed: July 24, 2006
    Publication date: November 16, 2006
    Applicant: Fujitsu Limited
    Inventors: Haruhiko Tabuchi, Terukazu Naruse, Koji Terada, Kohei Shibata
  • Publication number: 20060140546
    Abstract: An optical waveguide module has a planar type optical waveguide having at least one core, an optical fiber for connecting with the core of the optical waveguide optically, and an optical element for connecting the core of the optical waveguide optically. The optical waveguide includes a groove for allowing an optical fiber to be inserted thereinto and aligning the optical fiber with the core to connect the optical fiber and the core optically. A first edge of the optical waveguide, which traverses the core, is tapered and an edge of the core, which is exposed in the first edge of the optical waveguide, is formed as a reflection surface. A planar type optical element is mounted as the optical element at a position that is opposite to the reflection surface to connect the planar type optical element with the core optically through the reflection surface.
    Type: Application
    Filed: December 16, 2005
    Publication date: June 29, 2006
    Inventors: Hidehiko Nakata, Takahiro Arakida, Terukazu Naruse, Miwa Okubo, Kazuyoshi Yamada, Momoko Eguchi
  • Patent number: 7054526
    Abstract: An optical multiplexer/demultiplexer uses a diffraction grating, capable of multiplexing/demultiplexing lights of narrow wavelength spacing at a short focal distance. To this end, a plurality of output waveguide groups is connected to one end face of a slab waveguide to which an input waveguide group is connected. A diffraction grating in which grating grooves, each including a plurality of reflection planes blazed corresponding to respective arrangement directions of the plurality of output waveguide groups are formed, is disposed on the other end face of the slab waveguide. The arrangements of the respective output waveguide groups are determined, so that diffracted lights of wavelengths different from each other, which are reflected by the reflection planes of the diffraction grating, respectively reach the output waveguides of the plurality of output waveguide groups.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: May 30, 2006
    Assignee: Fujitsu Limited
    Inventor: Terukazu Naruse
  • Patent number: 7020358
    Abstract: The invention provides a wavelength division demultiplexing apparatus which can reduce the connection loss between an input slab and channel waveguides and can suppress excitation of higher-order mode light to reduce the loss. The apparatus includes a first waveguide for propagating WDM light, a first slab for diffusing the light from the first waveguide, a plurality of channel waveguides having a series of different waveguide lengths with a predetermined difference for receiving and splitting the light from the first slab, a second slab for condensing the split light from the channel waveguides, and a second waveguide for propagating the light from the second slab therein, all formed on asubtrate. The channel waveguides and the first slab are optically connected to each other at a number of nodes greater than the number of nodes at which the channel waveguides and the second slab are connected to each other.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: March 28, 2006
    Assignee: Fujitsu Limited
    Inventors: Haruhiko Tabuchi, Terukazu Naruse
  • Publication number: 20050254753
    Abstract: The present invention has an object to provide an optical multiplexer/demultiplexer using a diffraction grating, capable of multiplexing/demultiplexing lights of narrow wavelength spacing at a short focal distance. To this end, in the present optical multiplexer/demultiplexer, a plurality of output waveguide groups is connected to one end face of a slab waveguide to which an input waveguide group is connected, a diffraction grating in which grating grooves each including a plurality of reflection planes blazed corresponding to respective arrangement directions of the plurality of output waveguide groups are formed, is disposed on the other end face of the slab waveguide, and the arrangements of the respective output waveguide groups are determined, so that diffracted lights of wavelengths different from each other, which are reflected by the reflection planes of the diffraction grating, respectively reach the output waveguides of the plurality of output waveguide groups.
    Type: Application
    Filed: March 31, 2005
    Publication date: November 17, 2005
    Inventor: Terukazu Naruse
  • Publication number: 20040234203
    Abstract: The invention provides a wavelength division demultiplexing apparatus which can reduce the connection loss between an input slab and channel waveguides and can suppress excitation of higher-order mode light to reduce the loss. The apparatus includes a first waveguide for propagating WDM light, a first slab for diffusing the light from the first waveguide, a plurality of channel waveguides having a series of different waveguide lengths with a predetermined difference for receiving and splitting the light from the first slab, a second slab for condensing the split light from the channel waveguides, and a second waveguide for propagating the light from the second slab therein, all formed on asubtrate. The channel waveguides and the first slab are optically connected to each other at a number of nodes greater than the number of nodes at which the channel waveguides and the second slab are connected to each other.
    Type: Application
    Filed: June 25, 2004
    Publication date: November 25, 2004
    Applicant: Fujitsu Limited
    Inventors: Haruhiko Tabuchi, Terukazu Naruse
  • Patent number: 6813415
    Abstract: The present invention aims at providing a wavelength multiplexing/demultiplexing apparatus for reducing a loss at a portion where an input slab and channel waveguides are connected with each other, thereby capable of realizing the reduction of loss in the overall apparatus. In order to achieve the above object, in this wavelength multiplexing/demultiplexing apparatus comprising an input waveguide, an input slab, channel waveguides, an output slab and output waveguides that are formed on a substrate, a curvature radius (r1) of an output side circular arc interface of the input slab is smaller than a curvature radius (r2) of an input side circular arc interface of the output slab, and spacing (P1) between the channel waveguides at a portion where the input slab and each of the channel waveguides are connected with each other is smaller than spacing (P2) between the channel waveguides at a portion where each of the channel waveguides and the output slab are connected with each other.
    Type: Grant
    Filed: January 29, 2003
    Date of Patent: November 2, 2004
    Assignee: Fujitsu Limited
    Inventors: Haruhiko Tabuchi, Terukazu Naruse
  • Patent number: 6810167
    Abstract: The invention provides a wavelength division demultiplexing apparatus which can reduce the connection loss between an input slab and channel waveguides and can suppress excitation of higher-order mode light to reduce the loss. The apparatus includes a first waveguide for propagating WDM light, a first slab for diffusing the light from the first waveguide, a plurality of channel waveguides having a series of different waveguide lengths with a predetermined difference for receiving and splitting the light from the first slab, a second slab for condensing the split light from the channel waveguides, and a second waveguide for propagating the light from the second slab therein, all formed on a subtrate. The channel waveguides and the first slab are optically connected to each other at a number of nodes greater than the number of nodes at which the channel waveguides and the second slab are connected to each other.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: October 26, 2004
    Assignee: Fujitsu Limited
    Inventors: Haruhiko Tabuchi, Terukazu Naruse
  • Patent number: 6798952
    Abstract: An optical multiplexer/demultiplexer having a small-loss structure that uses an arrayed waveguide grating to optimally make the passband characteristic of demultiplexed light flat. An optical input waveguide and a sector slab waveguide are connected by a directional coupler. The directional coupler comprises a central waveguide including an end portion on the output side of the optical input waveguide and arranged waveguides which are arranged on both sides of the central waveguide and the exits of which are connected to the sector slab waveguide. A taper is formed on both side portions of the central waveguide so that the width of a core will gradually narrow in the direction of the exit, and the central waveguide is located so that this end portion will not touch the sector slab waveguide. The width of a core in each of the arranged waveguides is uniform.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: September 28, 2004
    Assignee: Fujitsu Limited
    Inventor: Terukazu Naruse
  • Publication number: 20040151432
    Abstract: An optical device used, for example, in an add/drop multiplexer, a dynamic gain equalizer or a optical power monitor. The optical device includes (a) a substrate; (b) a first slab waveguide formed on the substrate; (c) channel waveguides of differing lengths formed on the substrate, light output from the first slab waveguide being input to the channel waveguides; and (d) a second slab waveguide formed on the substrate, light output from the channel waveguides being input to the second slab waveguide. An end face of the second slab waveguide shares a face with an end face of the substrate. The optical device has low loss characteristics.
    Type: Application
    Filed: September 5, 2003
    Publication date: August 5, 2004
    Applicant: Fujitsu Limited
    Inventors: Haruhiko Tabuchi, Terukazu Naruse, Koji Terada, Kohei Shibata
  • Publication number: 20030228105
    Abstract: The present invention aims at providing a wavelength multiplexing/demultiplexing apparatus for reducing a loss at a portion where an input slab and channel waveguides are connected with each other, thereby capable of realizing the reduction of loss in the overall apparatus. In order to achieve the above object, in this wavelength multiplexing/demultiplexing apparatus comprising an input waveguide, an input slab, channel waveguides, an output slab and output waveguides that are formed on a substrate, a curvature radius (r1) of an output side circular arc interface of the input slab is smaller than a curvature radius (r2) of an input side circular arc interface of the output slab, and spacing (P1) between the channel waveguides at a portion where the input slab and each of the channel waveguides are connected with each other is smaller than spacing (P2) between the channel waveguides at a portion where each of the channel waveguides and the output slab are connected with each other.
    Type: Application
    Filed: January 29, 2003
    Publication date: December 11, 2003
    Applicant: Fujitsu Limited
    Inventors: Haruhiko Tabuchi, Terukazu Naruse