Patents by Inventor Tetsuji Ueno

Tetsuji Ueno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11901220
    Abstract: The present disclosure relates to a method for forming a semiconductor device includes forming an opening between first and second sidewalls of respective first and second terminals. The first and second sidewalls oppose each other. The method further includes depositing a first dielectric material at a first deposition rate on top portions of the opening and depositing a second dielectric material at a second deposition rate on the first dielectric material and on the first and second sidewalls. The second dielectric material and the first and second sidewalls entrap a pocket of air. The method also includes performing a treatment process on the second dielectric material.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: February 13, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shuen-Shin Liang, Chen-Han Wang, Keng-Chu Lin, Tetsuji Ueno, Ting-Ting Chen
  • Patent number: 11848238
    Abstract: The present disclosure describes a method of fabricating a semiconductor structure that includes forming a fin structure on a substrate, forming a polysilicon gate structure on a first portion of the fin structure, forming an opening in a second portion of the fin structure, wherein the first and second portions of the fin structure is adjacent to each other, forming a recess laterally on a sidewall of the first portion of the fin structure underlying the polysilicon gate structure, and forming an inner spacer structure within the recess. The inner spacer structure comprises an inner air spacer enclosed by a first dielectric spacer layer and a second dielectric spacer layer.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: December 19, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chen-Han Wang, Keng-Chu Lin, Shuen-Shin Liang, Tetsuji Ueno, Ting-Ting Chen
  • Publication number: 20230268387
    Abstract: The present disclosure relates to a semiconductor device including first and second terminals formed on a fin region and a seal layer formed between the first and second terminals. The seal layer includes a silicon carbide material doped with oxygen. The semiconductor device also includes an air gap surrounded by the seal layer, the fin region, and the first and second terminals.
    Type: Application
    Filed: May 2, 2023
    Publication date: August 24, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shuen-Shin LIANG, Tetsuji UENO, Ting-Ting CHEN, Chen-Han WANG, Keng-Chu LIN
  • Publication number: 20230242115
    Abstract: The present disclosure describes a method of forming an intermediate spacer structure between a gate structure and a source/drain (S/D) contact structure and removing a top portion of the intermediate spacer structure to form a recess. The intermediate spacer structure includes a first spacer layer, a second spacer layer, and a sacrificial spacer layer between the first spacer layer and the second spacer layer. The method further includes removing the sacrificial spacer layer to form an air gap between the first spacer layer and the second spacer layer and spinning a dielectric layer on the air gap, the first spacer layer, and the second spacer layer to fill in the recess and seal the air gap. The dielectric layer includes raw materials for a spin-on dielectric material.
    Type: Application
    Filed: April 10, 2023
    Publication date: August 3, 2023
    Applicant: Taiwan Semiconductor For Manufactuing Co., Ltd.
    Inventors: Ting-Ting CHEN, Chen-Han Wang, Keng-Chu Lin, Shuen-Shin Liang, Tsu-Hsiu Perng, Tsai-Jung Ho, Tsung-Han Ko, Tetsuji Ueno, Yahru Cheng
  • Patent number: 11688766
    Abstract: The present disclosure relates to a semiconductor device including first and second terminals formed on a fin region and a seal layer formed between the first and second terminals. The seal layer includes a silicon carbide material doped with oxygen. The semiconductor device also includes an air gap surrounded by the seal layer, the fin region, and the first and second terminals.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: June 27, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shuen-Shin Liang, Chen-Han Wang, Keng-Chu Lin, Tetsuji Ueno, Ting-Ting Chen
  • Patent number: 11626482
    Abstract: The present disclosure describes a method of forming an intermediate spacer structure between a gate structure and a source/drain (S/D) contact structure and removing a top portion of the intermediate spacer structure to form a recess. The intermediate spacer structure includes a first spacer layer, a second spacer layer, and a sacrificial spacer layer between the first spacer layer and the second spacer layer. The method further includes removing the sacrificial spacer layer to form an air gap between the first spacer layer and the second spacer layer and spinning a dielectric layer on the air gap, the first spacer layer, and the second spacer layer to fill in the recess and seal the air gap. The dielectric layer includes raw materials for a spin-on dielectric material.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: April 11, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ting-Ting Chen, Chen-Han Wang, Keng-Chu Lin, Shuen-Shin Liang, Tsu-Hsiu Perng, Tsai-Jung Ho, Tsung-Han Ko, Tetsuji Ueno, Yahru Cheng
  • Publication number: 20220367278
    Abstract: The present disclosure describes a method of fabricating a semiconductor structure that includes forming a fin structure on a substrate, forming a polysilicon gate structure on a first portion of the fin structure, forming an opening in a second portion of the fin structure, wherein the first and second portions of the fin structure is adjacent to each other, forming a recess laterally on a sidewall of the first portion of the fin structure underlying the polysilicon gate structure, and forming an inner spacer structure within the recess. The inner spacer structure comprises an inner air spacer enclosed by a first dielectric spacer layer and a second dielectric spacer layer.
    Type: Application
    Filed: July 27, 2022
    Publication date: November 17, 2022
    Applicant: Taiwan Semiconductor Manufafacturing Co, Ltd.
    Inventors: Chen-Han WANG, Keng-Chu LIN, Shuen-Shin LIANG, Tetsuji UENO, Ting-Ting CHEN
  • Patent number: 11502166
    Abstract: The present disclosure relates to a semiconductor device including first and second terminals formed on a fin region and a seal layer formed between the first and second terminals. The seal layer includes a silicon carbide material doped with oxygen. The semiconductor device also includes an air gap surrounded by the seal layer, the fin region, and the first and second terminals.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: November 15, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shuen-Shin Liang, Chen-Han Wang, Keng-Chu Lin, Tetsuji Ueno, Ting-Ting Chen
  • Patent number: 11456360
    Abstract: A method and structure for providing a two-step defect reduction bake, followed by a high-temperature epitaxial layer growth. In various embodiments, a semiconductor wafer is loaded into a processing chamber. While the semiconductor wafer is loaded within the processing chamber, a first pre-epitaxial layer deposition baking process is performed at a first pressure and first temperature. In some cases, after the first pre-epitaxial layer deposition baking process, a second pre-epitaxial layer deposition baking process is then performed at a second pressure and second temperature. In some embodiments, the second pressure is different than the first pressure. By way of example, after the second pre-epitaxial layer deposition baking process and while at a growth temperature, a precursor gas may then be introduced into the processing chamber to deposit an epitaxial layer over the semiconductor wafer.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: September 27, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tetsuji Ueno, Ming-Hua Yu, Chan-Lon Yang
  • Publication number: 20220285492
    Abstract: The present disclosure describes a method of forming an intermediate spacer structure between a gate structure and a source/drain (S/D) contact structure and removing a top portion of the intermediate spacer structure to form a recess. The intermediate spacer structure includes a first spacer layer, a second spacer layer, and a sacrificial spacer layer between the first spacer layer and the second spacer layer. The method further includes removing the sacrificial spacer layer to form an air gap between the first spacer layer and the second spacer layer and spinning a dielectric layer on the air gap, the first spacer layer, and the second spacer layer to fill in the recess and seal the air gap. The dielectric layer includes raw materials for a spin-on dielectric material.
    Type: Application
    Filed: March 4, 2021
    Publication date: September 8, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ting-Ting CHEN, Chen-Han WANG, Keng-Chu LIN, Shuen-Shin LIANG, Tsu-Hsiu PERNG, Tsai-Jung HO, Tsung-Han KO, Tetsuji UENO, Yahru CHENG
  • Publication number: 20220223686
    Abstract: The present disclosure relates to a semiconductor device including first and second terminals formed on a fin region and a seal layer formed between the first and second terminals. The seal layer includes a silicon carbide material doped with oxygen. The semiconductor device also includes an air gap surrounded by the seal layer, the fin region, and the first and second terminals.
    Type: Application
    Filed: April 4, 2022
    Publication date: July 14, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shuen-Shin Liang, Chen-Han Wang, Keng-Chu Lin, Tetsuji Ueno, Ting-Ting Chen
  • Patent number: 11296187
    Abstract: The present disclosure relates to a semiconductor device including first and second terminals formed on a fin region and a seal layer formed between the first and second terminals. The seal layer includes a silicon carbide material doped with oxygen. The semiconductor device also includes an air gap surrounded by the seal layer, the fin region, and the first and second terminals.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: April 5, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shuen-Shin Liang, Chen-Han Wang, Keng-Chu Lin, Tetsuji Ueno, Ting-Ting Chen
  • Publication number: 20210407856
    Abstract: The present disclosure describes a method of fabricating a semiconductor structure that includes forming a fin structure on a substrate, forming a polysilicon gate structure on a first portion of the fin structure, forming an opening in a second portion of the fin structure, wherein the first and second portions of the fin structure is adjacent to each other, forming a recess laterally on a sidewall of the first portion of the fin structure underlying the polysilicon gate structure, and forming an inner spacer structure within the recess. The inner spacer structure comprises an inner air spacer enclosed by a first dielectric spacer layer and a second dielectric spacer layer.
    Type: Application
    Filed: June 30, 2020
    Publication date: December 30, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chen-Han Wang, Keng-Chu Lin, Shuen-Shin Liang, Tetsuji Ueno, Ting-Ting Chen
  • Publication number: 20210193506
    Abstract: The present disclosure relates to a method for forming a semiconductor device includes forming an opening between first and second sidewalls of respective first and second terminals. The first and second sidewalls oppose each other. The method further includes depositing a first dielectric material at a first deposition rate on top portions of the opening and depositing a second dielectric material at a second deposition rate on the first dielectric material and on the first and second sidewalls. The second dielectric material and the first and second sidewalls entrap a pocket of air. The method also includes performing a treatment process on the second dielectric material.
    Type: Application
    Filed: July 23, 2020
    Publication date: June 24, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shuen-Shin LIANG, Chen-Han WANG, Keng-Chu LIN, Tetsuji UENO, Ting-Ting CHEN
  • Publication number: 20210193799
    Abstract: The present disclosure relates to a semiconductor device including first and second terminals formed on a fin region and a seal layer formed between the first and second terminals. The seal layer includes a silicon carbide material doped with oxygen. The semiconductor device also includes an air gap surrounded by the seal layer, the fin region, and the first and second terminals.
    Type: Application
    Filed: November 20, 2020
    Publication date: June 24, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shuen-Shin LIANG, Chen-Han WANG, Keng-Chu LIN, Tetsuji UENO, Ting-Ting CHEN
  • Publication number: 20200279920
    Abstract: A method and structure for providing a two-step defect reduction bake, followed by a high-temperature epitaxial layer growth. In various embodiments, a semiconductor wafer is loaded into a processing chamber. While the semiconductor wafer is loaded within the processing chamber, a first pre-epitaxial layer deposition baking process is performed at a first pressure and first temperature. In some cases, after the first pre-epitaxial layer deposition baking process, a second pre-epitaxial layer deposition baking process is then performed at a second pressure and second temperature. In some embodiments, the second pressure is different than the first pressure. By way of example, after the second pre-epitaxial layer deposition baking process and while at a growth temperature, a precursor gas may then be introduced into the processing chamber to deposit an epitaxial layer over the semiconductor wafer.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 3, 2020
    Inventors: Tetsuji UENO, Ming-Hua YU, Chan-Lon YANG
  • Patent number: 10658468
    Abstract: A method and structure for providing a two-step defect reduction bake, followed by a high-temperature epitaxial layer growth. In various embodiments, a semiconductor wafer is loaded into a processing chamber. While the semiconductor wafer is loaded within the processing chamber, a first pre-epitaxial layer deposition baking process is performed at a first pressure and first temperature. In some cases, after the first pre-epitaxial layer deposition baking process, a second pre-epitaxial layer deposition baking process is then performed at a second pressure and second temperature. In some embodiments, the second pressure is different than the first pressure. By way of example, after the second pre-epitaxial layer deposition baking process and while at a growth temperature, a precursor gas may then be introduced into the processing chamber to deposit an epitaxial layer over the semiconductor wafer.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: May 19, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tetsuji Ueno, Ming-Hua Yu, Chan-Lon Yang
  • Patent number: 10453925
    Abstract: A method and structure for providing a two-step defect reduction bake, followed by a high-temperature epitaxial layer growth. In various embodiments, a semiconductor wafer is loaded into a processing chamber. While the semiconductor wafer is loaded within the processing chamber, a first pre-epitaxial layer deposition baking process is performed at a first pressure and first temperature. In some cases, after the first pre-epitaxial layer deposition baking process, a second pre-epitaxial layer deposition baking process is then performed at a second pressure and second temperature. In some embodiments, the second pressure is different than the first pressure. By way of example, after the second pre-epitaxial layer deposition baking process and while at a growth temperature, a precursor gas may then be introduced into the processing chamber to deposit an epitaxial layer over the semiconductor wafer.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: October 22, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tetsuji Ueno, Ming-Hua Yu, Chan-Lon Yang
  • Publication number: 20190109194
    Abstract: A method and structure for providing a two-step defect reduction bake, followed by a high-temperature epitaxial layer growth. In various embodiments, a semiconductor wafer is loaded into a processing chamber. While the semiconductor wafer is loaded within the processing chamber, a first pre-epitaxial layer deposition baking process is performed at a first pressure and first temperature. In some cases, after the first pre-epitaxial layer deposition baking process, a second pre-epitaxial layer deposition baking process is then performed at a second pressure and second temperature. In some embodiments, the second pressure is different than the first pressure. By way of example, after the second pre-epitaxial layer deposition baking process and while at a growth temperature, a precursor gas may then be introduced into the processing chamber to deposit an epitaxial layer over the semiconductor wafer.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 11, 2019
    Inventors: Tetsuji Ueno, Ming-Hua Yu, Chan-Lon Yang
  • Publication number: 20170221709
    Abstract: A method and structure for providing a two-step defect reduction bake, followed by a high-temperature epitaxial layer growth. In various embodiments, a semiconductor wafer is loaded into a processing chamber. While the semiconductor wafer is loaded within the processing chamber, a first pre-epitaxial layer deposition baking process is performed at a first pressure and first temperature. In some cases, after the first pre-epitaxial layer deposition baking process, a second pre-epitaxial layer deposition baking process is then performed at a second pressure and second temperature. In some embodiments, the second pressure is different than the first pressure. By way of example, after the second pre-epitaxial layer deposition baking process and while at a growth temperature, a precursor gas may then be introduced into the processing chamber to deposit an epitaxial layer over the semiconductor wafer.
    Type: Application
    Filed: April 1, 2016
    Publication date: August 3, 2017
    Inventors: Tetsuji Ueno, Ming-Hua Yu, Chan-Lon Yang