Patents by Inventor Tetsuo Fujii

Tetsuo Fujii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6365458
    Abstract: A gate oxide film is formed on a surface of a semiconductor substrate. A tunnel insulating film having a thickness smaller than that of the gate insulating film is formed in a portion thereof corresponding to a tunnel region. A first silicon film having a low impurity concentration is formed on the gate insulating film. A second silicon film having an impurity concentration higher than that of the first silicon film is formed on the first silicon film so as to be connected thereto. A third silicon film is formed on the second silicon film through an insulating film. The second and third silicon films are formed into floating and control gates, respectively, thereby forming a semiconductor memory device.
    Type: Grant
    Filed: September 14, 2000
    Date of Patent: April 2, 2002
    Assignee: NipponDenso Co., Ltd.
    Inventors: Tetsuo Fujii, Minekazu Sakai, Akira Kuroyanagi
  • Publication number: 20020026832
    Abstract: A semiconductor mechanical sensor having a new structure in which a S/N ratio is improved. In the central portion of a silicon substrate 1, a recess portion 2 is formed which includes a beam structure. A weight is formed at the tip of the beam, and in the bottom surface of the weight in the bottom surface of the recess portion 2 facing the same, an electrode 5 is formed. An alternating current electric power is applied between the weight portion 4 and the electrode 5 so that static electricity is created and the weight is excited by the static electricity. In an axial direction which is perpendicular to the direction of the excitation of the weight, an electrode 6 is disposed to face one surface of the weight and a wall surface of the substrate which faces the same. A change in a capacitance between the facing electrodes is electrically detected, and therefore, a change in a physical force acting in the same direction is detected.
    Type: Application
    Filed: September 7, 2001
    Publication date: March 7, 2002
    Applicant: NIPPODENSO CO., LTD.
    Inventors: Tetsuo Fujii, Masahito Imai
  • Publication number: 20010032509
    Abstract: The purpose of the present invention is to provide an acceleration sensor having a novel structure, by which high precision and high reliability can be realized.
    Type: Application
    Filed: June 19, 2001
    Publication date: October 25, 2001
    Inventor: Tetsuo Fujii
  • Publication number: 20010009775
    Abstract: A gate oxide film is formed on a surface of a semiconductor substrate. A tunnel insulating film having a thickness smaller than that of the gate insulating film is formed in a portion thereof corresponding to a tunnel region. A first silicon film having a low impurity concentration is formed on the gate insulating film. A second silicon film having an impurity concentration higher than that of the first silicon film is formed on the first silicon film so as to be connected thereto. A third silicon film is formed on the second silicon film through an insulating film. The second and third silicon films are formed into floating and control gates, respectively, thereby forming a semiconductor memory device.
    Type: Application
    Filed: February 6, 2001
    Publication date: July 26, 2001
    Applicant: NIPPONDENSO CO., LTD.
    Inventors: Tetsuo Fujii, Minekazu Sakai, Akira Kuroyanagi
  • Patent number: 6255741
    Abstract: A heat resisting resin sheet is bonded to a semiconductor chip as a protective cap for protecting a beam structure provided on the semiconductor chip, through a heat resisting adhesive. The heat resisting resin sheet is composed of a polyimide base member and the heat resisting adhesive is composed of silicone adhesive. The heat resisting resin sheet is not deformed during a manufacturing process of the semiconductor chip. In addition, grinding water does not invade into the semiconductor chip during dicing-cut.
    Type: Grant
    Filed: March 16, 1999
    Date of Patent: July 3, 2001
    Assignee: Denso Corporation
    Inventors: Shinji Yoshihara, Sumitomo Inomata, Kinya Atsumi, Minekazu Sakai, Yasuki Shimoyama, Tetsuo Fujii
  • Patent number: 6244112
    Abstract: A single crystal silicon substrate (1) is bonded through an SiO2 film (9) to a single crystal silicon substrate (8), and the single crystal silicon substrate (1) is made into a thin film. A cantilever (13) is formed on the single crystal silicon substrate (1), and the thickness of the cantilever (13) in a direction parallel to the surface of the single crystal silicon substrate (1) is made smaller than the thickness of the cantilever in the direction of the depth of the single crystal silicon substrate (1), and movable in a direction parallel to the substrate surface. In addition, the surface of the cantilever (13) and the part of the single crystal silicon substrate (1), opposing the cantilever (13), are, respectively, coated with an SiO2 film (5), so that an electrode short circuit is prevented in a capacity-type sensor. In addition, a signal-processing circuit (10) is formed on the single crystal silicon substrate (1), so that signal processing is performed as the cantilever (13) moves.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: June 12, 2001
    Assignee: Denso Corporation
    Inventor: Tetsuo Fujii
  • Publication number: 20010001931
    Abstract: A semiconductor mechanical sensor having a new structure in which a S/N ratio is improved. In the central portion of a silicon substrate 1, a recess portion 2 is formed which includes a beam structure. A weight is formed at the tip of the beam, and in the bottom surface of the weight in the bottom surface of the recess portion 2 facing the same, an electrode 5 is formed. An alternating current electric power is applied between the weight portion 4 and the electrode 5 so that static electricity is created and the weight is excited by the static electricity. In an axial direction which is perpendicular to the direction of the excitation of the weight, an electrode 6 is disposed to face one surface of the weight and a wall surface of the substrate which faces the same. A change in a capacitance between the facing electrodes is electrically detected, and therefore, a change in a physical force acting in the same direction is detected.
    Type: Application
    Filed: December 28, 2000
    Publication date: May 31, 2001
    Applicant: DENSO Corporation
    Inventors: Tetsuo Fujii, Masahito Imai
  • Patent number: 6227050
    Abstract: A semiconductor mechanical sensor having a new structure in which a S/N ratio is improved. In the central portion of a silicon substrate 1, a recess portion 2 is formed which includes a beam structure. A weight is formed at the tip of the beam, and in the bottom surface of the weight in the bottom surface of the recess portion 2 facing the same, an electrode 5 is formed. An alternating current electric power is applied between the weight portion 4 and the electrode 5 so that static electricity is created and the weight is excited by the static electricity. In an axial direction which is perpendicular to the direction of the excitation of the weight, an electrode 6 is disposed to face one surface of the weight and a wall surface of the substrate which faces the same. A change in a capacitance between the facing electrodes is electrically detected, and therefore, a change in a physical force acting in the same direction is detected.
    Type: Grant
    Filed: October 28, 1998
    Date of Patent: May 8, 2001
    Assignee: Nippondense Co., Ltd.
    Inventors: Tetsuo Fujii, Masahito Imai
  • Patent number: 6227049
    Abstract: A single crystal silicon substrate (1) is bonded through an SiO2 film (9) to a single crystal silicon substrate (8), and the single crystal silicon substrate (1) is made into a thin film. A cantilever (13) is formed on the single crystal silicon substrate (1), and the thickness of the cantilever (13) in a direction parallel to the surface of the single crystal silicon substrate (1) is made smaller than the thickness of the cantilever in the direction of the depth of the single crystal silicon substrate (1), and movable in a direction parallel to the substrate surface. In addition, the surface of the cantilever (13) and the part of the single crystal silicon substrate (1), opposing the cantilever (13), are, respectively, coated with an SiO2 film (5), so that an electrode short circuit is prevented in a capacity-type sensor. In addition, a signal-processing circuit (10) is formed on the single crystal silicon substrate (1), so that signal processing is performed as the cantilever (13) moves.
    Type: Grant
    Filed: December 4, 1995
    Date of Patent: May 8, 2001
    Assignee: Denso Corporation
    Inventor: Tetsuo Fujii
  • Patent number: 6171881
    Abstract: A single crystal silicon substrate (1) is bonded through an SiO2 film (9) to a single crystal silicon substrate (8), and the single crystal silicon substrate (1) is made into a thin film. A cantilever (13) is formed on the single crystal silicon substrate (1), and the thickness of the cantilever (13) in a direction parallel to the surface of the single crystal silicon substrate (1) is made smaller, than the thickness of the cantilever in the direction of the depth of the single crystal silicon substrate (1), and movable in a direction parallel to the substrate surface. In addition, the surface of the cantilever (13) and the part of the single crystal silicon substrate (1), opposing the cantilever (13), are, respectively, coated with an SiO2 film (5), so that an electrode short circuit is prevented in a capacity-type sensor. In addition, a signal-processing circuit (10) is formed on the single crystal silicon substrate (1), so that signal processing is performed as the cantilever (13) moves.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: January 9, 2001
    Assignee: Denso Corporation
    Inventor: Tetsuo Fujii
  • Patent number: 5872024
    Abstract: A semiconductor mechanical sensor having a new structure in which a S/N ratio is improved. In the central portion of a silicon substrate 1, a recess portion 2 is formed which includes a beam structure. A weight is formed at the tip of the beam, and in the bottom surface of the weight in the bottom surface of the recess portion 2 facing the same, an electrode 5 is formed. An alternating current electric power is applied between the weight portion 4 and the electrode 5 so that static electricity is created and the weight is excited by the static electricity. In an axial direction which is perpendicular to the direction of the excitation of the weight, an electrode 6 is disposed to face one surface of the weight and a wall surface of the substrate which faces the same. A charge in a capacitance between the facing electrodes is electrically detected, and therefore, a change in a physical force acting in the same direction is detected.
    Type: Grant
    Filed: April 14, 1997
    Date of Patent: February 16, 1999
    Assignee: Nippondenso Co., Ltd.
    Inventors: Tetsuo Fujii, Masahito Imai
  • Patent number: 5747846
    Abstract: A non-volatile memory cell having a structure having improved integration and simplified electrode wiring structure. The programmable non-volatile memory cell of the present invention adopts a mono-layer gate scheme to simplify the electrode wiring structure and to eliminate a current leakage problem of an insulating film between electrodes. A side and bottom of a semiconductor region, which is disposed directly below a capacity electrode section with a gate insulating film interposed therebetween that compose a control electrode, are isolated from another semiconductor region and semiconductor substrate by insulating films. Thus, a high programming control voltage which is not limited by a junction yield voltage between the semiconductor regions and semiconductor substrate may be applied. Due to that, an area of the capacity electrode section of a floating electrode may be considerably reduced.
    Type: Grant
    Filed: November 23, 1994
    Date of Patent: May 5, 1998
    Assignee: Nippondenso Co., Ltd.
    Inventors: Makio Iida, Tetsuo Fujii, Yoshihiko Isobe
  • Patent number: 5627399
    Abstract: A semiconductor device of the type having a semiconductor substrate; a semiconductor layer disposed on the semiconductor substrate; a first element formed in a region of the semiconductor layer and having a perimeter including a bottom; a second element formed in another region of the semiconductor layer; an insulating layer surrounding the perimeter of the first element, for electrically insulating and separating the first element from the second element and the semiconductor substrate; an electrical shield layer disposed between the insulating layer and the first element, surrounding the perimeter of the first element, and adapted to a reference electric potential applied thereto, for shielding the first element from an electrical fluctuation of the semiconductor substrate caused by the second element; and an electrode for applying the reference electric potential to the electrical shield layer.
    Type: Grant
    Filed: November 28, 1995
    Date of Patent: May 6, 1997
    Assignee: Nippondenso Co., Ltd.
    Inventor: Tetsuo Fujii
  • Patent number: 5627318
    Abstract: A semiconductor mechanical sensor having a new structure in which a S/N ratio is improved. In the central portion of a silicon substrate 1, a recess portion 2 is formed which includes a beam structure. A weight is formed at the tip of the beam, and in the bottom surface of the weight in the bottom surface of the recess portion 2 facing the same, an electrode 5 is formed. An alternating current electric power is applied between the weight portion 4 and the electrode 5 so that static electricity is created and the weight is excited by the static electricity. In an axial direction which is perpendicular to the direction of the excitation of the weight, an electrode 6 is disposed to face one surface of the weight and a wall surface of the substrate which faces the same. A change in a capacitance between the facing electrodes is electrically detected, and therefore, a change in a physical force acting in the same direction is detected.
    Type: Grant
    Filed: July 27, 1995
    Date of Patent: May 6, 1997
    Assignee: Nippondenso Co., Ltd.
    Inventors: Tetsuo Fujii, Masahito Imai
  • Patent number: 5523692
    Abstract: An oil deterioration detector comprising a sensitive electrode whose electric potential varies in response to acidity and/or basicity of oil to be measured, and a reference electrode associated with this sensitive electrode. An electrically conductive housing accommodates the sensitive electrode and the reference electrode together with the oil. A potential difference detector detects oil deterioration by measuring a potential difference between the sensitive electrode and the reference electrode. And, an insulating member is interposed between these electrodes and the electrically conductive housing for electrically insulating these electrodes from the electrically conductive housing. The reference electrode is grounded together with the electrically conductive housing. An insulating, hydrophilic porous member would be interposed between the sensitive electrode and the reference electrode.
    Type: Grant
    Filed: March 22, 1994
    Date of Patent: June 4, 1996
    Assignee: Nippondenso Co., Ltd.
    Inventors: Susumu Kuroyanagi, Tetsuo Fujii, Kingo Okada, Masaei Nozawa, Syuji Yamaguchi, Kiwamu Naito
  • Patent number: 5520051
    Abstract: Device including a strain generating portion supported at least at one end on a substrate and formed in a displaceable manner with respect to the substrate in a cavity of the substrate. A semiconductor strain sensing element, which is disposed at the strain generating portion, detects the amount of strain of the strain generating portion. A support is disposed at a connection point between the strain generating portion and the substrate so as to reinforce the connection point.
    Type: Grant
    Filed: May 25, 1994
    Date of Patent: May 28, 1996
    Assignee: Nippondenso Co., Ltd.
    Inventors: Tetsuo Fujii, Yoshitaka Gotoh, Susumu Kuroyanagi
  • Patent number: 5474952
    Abstract: A process for producing a semiconductor service of the type having a semiconductor substrate; a semiconductor layer disposed on the semiconductor substrate; a first element formed in a region of the semiconductor layer and having a perimeter including a bottom; a second element formed in another region of the semiconductor layer; an insulating layer surrounding the perimeter of the first element, for electrically insulating and separating the first element from the second element and the semiconductor substrate; an electrical shield layer disposed between the insulating layer and the first element, surrounding the perimeter of the first element, and adapted to a reference electric potential applied thereto, for shielding the first element from an electrical fluctuation of the semiconductor substrate caused by the second element; and an electrode for applying the reference electric potential to the electrical shield layer.
    Type: Grant
    Filed: November 21, 1994
    Date of Patent: December 12, 1995
    Assignee: Nippondenso Co., Ltd.
    Inventor: Tetsuo Fujii
  • Patent number: 5470771
    Abstract: A gate oxide film is formed on a surface of a semiconductor substrate. A tunnel insulating film having a thickness smaller than that of the gate insulating film is formed in a portion thereof corresponding to a tunnel region. A first silicon film having a low impurity concentration is formed on the gate insulating film. A second silicon film having an impurity concentration higher than that of the first silicon film is formed on the first silicon film so as to be connected thereto. A third silicon film is formed on the second silicon film through an insulating film. The second and third silicon films are formed into floating and control gates, respectively, thereby forming a semiconductor memory device.
    Type: Grant
    Filed: February 21, 1991
    Date of Patent: November 28, 1995
    Assignee: Nippondenso Co., Ltd.
    Inventors: Tetsuo Fujii, Minekazu Sakai, Akira Kuroyanagi
  • Patent number: 5461916
    Abstract: A semiconductor mechanical sensor having a new structure in which a S/N ratio is improved. In the central portion of a silicon substrate 1, a recess portion 2 is formed which includes a beam structure. A weight is formed at the tip of the beam, and in the bottom surface of the weight in the bottom surface of the recess portion 2 facing the same, an electrode 5 is formed. An alternating current electric power is applied between the weight portion 4 and the electrode 5 so that static electricity is created and the weight is excited by the static eletricity. In an axial direction which is perpendicular to the direction of the excitation of the weight, an electrode 6 is disposed to face one surface of the weight and a wall surface of the substrate which faces the same. A change in a capacitance between the facing electrodes is electrically detected, and therefore, a change in a physical force acting in the same direction is detected.
    Type: Grant
    Filed: August 20, 1993
    Date of Patent: October 31, 1995
    Assignee: Nippondenso Co., Ltd.
    Inventors: Tetsuo Fujii, Masahito Imai
  • Patent number: 5442223
    Abstract: An SOI-type semiconductor device in which electrical elements formed on one semiconductor substrate are isolated from each other by an insulating film and a shield layer, to ensure a stable operation of the electrical elements against electrical noise etc., and at the same time, a stress relief film is formed between the insulating film and the shield layer to ensure that an SOI layer is stabilized by being free from crystal defects. A process for producing same is also disclosed.
    Type: Grant
    Filed: April 11, 1994
    Date of Patent: August 15, 1995
    Assignee: Nippondenso Co., Ltd.
    Inventor: Tetsuo Fujii