Patents by Inventor Tetsuo Kawamura

Tetsuo Kawamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090169974
    Abstract: A conductive carbon carrier for a fuel cell having at least a surface layer graphitized, characterized in that the dimension (La) in a six-membered ring face (carbon plane) direction of a crystallite measured by X-ray diffraction is 4.5 nm or more. This carbon carrier improves the durability in a fuel cell and enables operation for a long period of time.
    Type: Application
    Filed: March 29, 2007
    Publication date: July 2, 2009
    Applicants: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Toshiharu Tabata, Tomoaki Terada, Takahiro Nagata, Susumu Enomoto, Yosuke Horiuchi, Hiroaki Takahashi, Tetsuo Kawamura, Hideyasu Kawai
  • Publication number: 20090099009
    Abstract: To provide a production process of an electrode catalyst for fuel cell whose initial voltage is high and whose endurance characteristics, especially, whose voltage drop being caused by high-potential application is less. A production process according to the present invention of an electrode catalyst for fuel cell is characterized in that: it includes: a dispersing step of dispersing a conductive support in a solution; a loading step of dropping a platinum-salt solution, a base-metal-salt solution and an iridium-salt solution to the resulting dispersion liquid, thereby loading respective metallic salts on the conductive support as hydroxides under an alkaline condition; and an alloying step of heating the conductive support with metallic hydroxides loaded in a reducing atmosphere to reduce them, thereby alloying them.
    Type: Application
    Filed: September 26, 2008
    Publication date: April 16, 2009
    Inventors: Hiroaki Takahashi, Sozaburo Ohashi, Tetsuo Kawamura, Yousuke Horiuchi, Toshiharu Tabata, Tomoaki Terada, Takahiro Nagata, Susumu Enomoto
  • Publication number: 20090092888
    Abstract: To enhance the activation of a catalyst comprising an alloy of platinum and cobalt, thereby providing an electrode catalyst for fuel cell whose battery output and fuel efficiency are high, and thereby providing a production process of the same. An electrode catalyst according to the present invention for fuel cell is an electrode catalyst for fuel cell in which catalytic particles comprising platinum and cobalt are loaded on a conductive support, and is characterized in that a compositional (molar) ratio of said catalytic particles is platinum:cobalt=3:1-5:1: In the range of platinum:cobalt=3:1-5:1, a high battery voltage is obtainable. When the proportion of platinum is less than platinum: cobalt=3:1, the elution of cobalt from out of catalyst increases. On the contrarily, when the proportion of platinum is more than platinum: cobalt=5:1, the catalytic activities become low.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 9, 2009
    Inventors: Hiroaki Takahashi, Sozaburo Ohashi, Tetsuo Kawamura, Yousuke Horiuchi, Takahiro Nagata, Tomoaki Terada, Toshiharu Tabata, Susumu Enomoto
  • Publication number: 20090011928
    Abstract: The invention relates to methods of preparing metal particles on a support material, including platinum-containing nanoparticles on a carbon support. Such materials can be used as electrocatalysts, for example as improved electrocatalysts in proton exchange membrane fuel cells (PEM-FCs).
    Type: Application
    Filed: July 2, 2008
    Publication date: January 8, 2009
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Sandia Corporation, Operator of Sandia National Laboratories, Toyota Motor Corporation
    Inventors: Tochi Tudor Nwoga, Kazuo Kawahara, Li Wen, Yujiang Song, John A. Shelnutt, James E. Miller, Craig John Medforth, Yukiyoshi Ueno, Tetsuo Kawamura
  • Publication number: 20080280165
    Abstract: A fuel cell cathode comprises a catalyst layer comprised of a catalyst-supported electrically conducive carrier and a polymer electrolyte. The catalyst-supporting electrically conductive carrier further supports or has mixed therein a catalyst that is in contact with an oxygen absorbing/releasing material. The cathode has excellent electrode characteristics with respect to oxygen-reducing reactions. A polymer electrolyte fuel cell fitted with the cathode can provide high battery output.
    Type: Application
    Filed: January 21, 2005
    Publication date: November 13, 2008
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventor: Tetsuo Kawamura
  • Publication number: 20060251953
    Abstract: The invention relates to methods of preparing metal particles on a support material, including platinum-containing nanoparticles on a carbon support. Such materials can be used as electrocatalysts, for example as improved electrocatalysts in polymer electrolyte membrane fuel cells (PEM-FCs).
    Type: Application
    Filed: January 11, 2006
    Publication date: November 9, 2006
    Applicant: Toyota Technical Center USA, Inc.
    Inventors: Wen Li, Tetsuo Kawamura, Tetsuo Nagami, Hiroaki Takahashi, John Muldoon, John Shelnutt, Yujiang Song, James Miller, Michael Hickner, Craig Medforth
  • Patent number: 6684627
    Abstract: The present invention is a method of solidifying sulfur component being the cause of “SOx poisoning” by use of a sulfur solidifier. The solidifier includes a metal element having a function of oxidizing the sulfur component and a basic metal element. And the solidifier solidifies sulfur component before exhaust gas flows into an NOx-occluding reduction-type exhaust purifying catalyst located on an exhaust path. Since the foregoing sulfur solidifier includes the above metal element and the basic metal element, it can effectively solidify the sulfur component which are the cause of the SOx poisoning, and ensure improvement in purification performance.
    Type: Grant
    Filed: May 21, 2001
    Date of Patent: February 3, 2004
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tatsuji Mizuno, Shinji Tsuji, Masahiko Takeuchi, Kenji Kato, Takaaki Ito, Yoshitsugu Ogura, Tetsuo Kawamura, Mareo Kimura
  • Publication number: 20010047653
    Abstract: The present invention is a method of solidifying sulfur component being the cause of “SOx poisoning” by use of a sulfur solidifier. The solidifier includes a metal element having a function of oxidizing the sulfur component and a basic metal element. And the solidifier solidifies sulfur component before exhaust gas flows into an NOx-occluding reduction-type exhaust purifying catalyst located on an exhaust path. Since the foregoing sulfur solidifier includes the above metal element and the basic metal element, it can effectively solidify the sulfur component which are the cause of the SOx poisoning, and ensure improvement in purification performance.
    Type: Application
    Filed: May 21, 2001
    Publication date: December 6, 2001
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tatsuji Mizuno, Shinji Tsuji, Masahiko Takeuchi, Kenji Kato, Takaaki Ito, Yoshitsugu Ogura, Tetsuo Kawamura, Mareo Kimura
  • Patent number: 4504704
    Abstract: A dynamic loudspeaker unit having a voice coil formed with two windings in which a capacitor is connected in series to a parallel circuit, one circuit arm being composed of a series circuit of one of the two windings and an inductor and the other circuit arm being composed of the remaining winding. The dynamic loudspeaker unit thus constructed is housed in a bass-reflex type cabinet, whereby a shoulder characteristic having a large Q in a bass zone can be obtained, and due to a combination of the inductor and the capacitor, a desired lowest resonance frequency lower than an actual lowest resonance frequency can be selected. Thus, the reproducible bass range can be extended.
    Type: Grant
    Filed: August 30, 1983
    Date of Patent: March 12, 1985
    Assignee: Pioneer Electronic Corporation
    Inventors: Takashi Ohyaba, Minoru Kamishima, Shozo Kinoshita, Tetsuo Kawamura, Hiroaki Matsuhisa