Patents by Inventor Tetsuro Fukui

Tetsuro Fukui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9130168
    Abstract: A piezoelectric ceramic that includes barium titanate and 0.04 mass % or more and 0.20 mass % or less manganese relative to barium titanate. The piezoelectric ceramic is composed of crystal grains. The crystal grains include crystal grains A having an equivalent circular diameter of 30 ?m or more and 300 ?m or less and crystal grains B having an equivalent circular diameter of 0.5 ?m or more and 3 ?m or less. The crystal grains A and the crystal grains B individually form aggregates and the aggregates of the crystal grains A and the aggregates of the crystal grains B form a sea-island structure.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: September 8, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Makoto Kubota, Tatsuo Furuta, Hiroshi Saito, Toshihiro Ifuku, Kenichi Takeda, Tetsuro Fukui
  • Patent number: 8846556
    Abstract: A piezoelectric ceramic that includes barium titanate and 0.04 mass % or more and 0.20 mass % or less manganese relative to barium titanate. The piezoelectric ceramic is composed of crystal grains. The crystal grains include crystal grains A having an equivalent circular diameter of 30 ?m or more and 300 ?m or less and crystal grains B having an equivalent circular diameter of 0.5 ?m or more and 3 ?m or less. The crystal grains A and the crystal grains B individually form aggregates and the aggregates of the crystal grains A and the aggregates of the crystal grains B form a sea-island structure.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: September 30, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Makoto Kubota, Tatsuo Furuta, Hiroshi Saito, Toshihiro Ifuku, Kenichi Takeda, Tetsuro Fukui
  • Patent number: 8480918
    Abstract: The present invention provides a piezoelectric material which can be applied even to the MEMS technique, exhibits satisfactory piezoelectricity even at high ambient temperatures and is environmentally clean, namely, a piezoelectric material including an oxide obtained by forming a solid solution composed of two perovskite oxides A(1)B(1)O3 and A(2)B(2)O3 different from each other in crystalline phase, the oxide being represented by the following general formula (1): X{A(1)B(1)O3}?(1?X){A(2)B(2)O3}??(1) wherein “A(1)” and “A(2)” are each an element including an alkali earth metal and may be the same or different from each other; “B(1)” and “B(2)” each include two or more metal elements, and either one of “B(1)” and “B(2)” contains Cu in a content of 3 atm % or more; and “X” satisfies the relation 0<X<1.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: July 9, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kaoru Miura, Toshihiro Ifuku, Kenichi Takeda, Tetsuro Fukui, Hiroshi Funakubo
  • Patent number: 8198199
    Abstract: There are disclosed an epitaxial film, comprising: heating an Si substrate provided with an SiO2 layer with a film thickness of 1.0 nm or more to 10 nm or less on a surface of the substrate; and forming on the SiO2 layer by use of a metal target represented by the following composition formula: yA(1?y)B??(1), in which A is one or more elements selected from the group consisting of rare earth elements including Y and Sc, B is Zr, and y is a numeric value of 0.03 or more to 0.20 or less, the epitaxial film represented by the following composition formula: xA2O3?(1?x)BO2??(2), in which A and B are respectively same elements as A and B of the composition formula (1), and x is a numeric value of 0.010 or more to 0.035 or less.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: June 12, 2012
    Assignees: Canon Kabushiki Kaisha, Tokyo Institute of Technology
    Inventors: Jumpei Hayashi, Takanori Matsuda, Tetsuro Fukui, Hiroshi Funakubo
  • Patent number: 8142678
    Abstract: A perovskite type oxide of a single crystal structure or a uniaxial-oriented crystal structure is represented by ABO3. Site A includes Pb as a main component and site B includes a plurality of elements. The perovskite type oxide includes a plurality of crystal phases selected from the group consisting of tetragonal, rhombohedral, orthorhombic, cubic, pseudo-cubic and monoclinic systems and the plurality of crystal phases are oriented in the direction of <100>.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: March 27, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takanori Matsuda, Katsumi Aoki, Toshihiro Ifuku, Kenichi Takeda, Tetsuro Fukui, Hiroshi Funakubo, Shintaro Yokoyama
  • Patent number: 8114307
    Abstract: The present invention provides a piezoelectric element and having a piezoelectric body and a pair of electrodes being contact with the piezoelectric body, wherein the piezoelectric body consists of an ABO3 perovskite oxide in which an A-site atom consists of Bi and a B-site atom is composed of an atom of at least two types of elements.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: February 14, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Katsumi Aoki, Kenichi Takeda, Tetsuro Fukui, Hiroshi Funakubo, Shintaro Yasui, Ken Nishida
  • Patent number: 7999441
    Abstract: The piezoelectric actuator includes a piezoelectric film between two electrode layers and a diaphragm. Assuming that: each elastic coefficient of all materials is isotropic and a distortion amount of the piezoelectric film by an electric field is isotropic in all in-plane directions; a point located on a diaphragm surface and having a maximum displacement when a predetermined electric field is applied to distort the piezoelectric film, is expressed by P?MAX; and a point located on a circumference of a reference-circle having P?MAX as a center and having a minimum difference in displacement from P?MAX is expressed by P?A, the diaphragm has a shape capable of determining an axis A1 set in a straight-line joining P?MAX and P?A, the diaphragm comprises a single-crystalline-material in which a plane orthogonal to A1 and perpendicular to an axis A2 on the diaphragm surface, is a {110}-plane, and the piezoelectric film is a {100}-single-orientation film.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: August 16, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Katsumi Aoki, Kenichi Takeda, Toshihiro Ifuku, Takanori Matsuda, Tetsuro Fukui
  • Patent number: 7984977
    Abstract: A piezoelectric element comprises a piezoelectric body including a film made of an ABO3 perovskite oxide crystal epitaxially grown above a substrate, and a pair of electrode layers provided to the piezoelectric body, wherein the piezoelectric body has a porous region on a side opposite to a side of the substrate.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: July 26, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kenichi Takeda, Katsumi Aoki, Toshihiro Ifuku, Takanori Matsuda, Tetsuro Fukui
  • Publication number: 20110128327
    Abstract: A piezoelectric ceramic that includes barium titanate and 0.04 mass % or more and 0.20 mass % or less manganese relative to barium titanate. The piezoelectric ceramic is composed of crystal grains. The crystal grains include crystal grains A having an equivalent circular diameter of 30 ?m or more and 300 ?m or less and crystal grains B having an equivalent circular diameter of 0.5 ?m or more and 3 ?m or less. The crystal grains A and the crystal grains B individually form aggregates and the aggregates of the crystal grains A and the aggregates of the crystal grains B form a sea-island structure.
    Type: Application
    Filed: November 23, 2010
    Publication date: June 2, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Makoto Kubota, Tatsuo Furuta, Hiroshi Saito, Toshihiro Ifuku, Kenichi Takeda, Tetsuro Fukui
  • Patent number: 7948154
    Abstract: A piezoelectric substance which is made of oxide with perovskite type structure which is made of ABO3, where a principal component of A is Pb, and principal components of B contain at least two kinds of elements among Nb, Mg, Zn, Sc, Cd, Ni, Mn, Co, Yb, In, and Fe, and Ti, characterized by being a uniaxial orientation crystal or a single crystal which has an a-domain and a c-domain of tetragonal.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: May 24, 2011
    Assignees: Canon Kabushiki Kaisha, Tokyo Institute of Technology
    Inventors: Toshihiro Ifuku, Kenichi Takeda, Tetsuro Fukui, Hiroshi Funakubo
  • Patent number: 7938515
    Abstract: The present invention provides a dielectric film structure having a substrate and a dielectric film provided on the substrate and in which the dielectric film has (001) face orientation with respect to the substrate, and in which a value u in the following equation (1) regarding the dielectric film is a real number greater than 2: u=(Cc/Ca)×(Wa/Wc)??(1) where, Cc is a count number of a peak of a (001?) face of the dielectric film in an Out-of-plane X ray diffraction measurement (here, 1? is a natural number selected so that Cc becomes maximum); Ca is a count number of a peak of a (h?00) face of the dielectric film in an In-plane X ray diffraction measurement (here, h? is a natural number selected so that Cc becomes maximum); Wc is a half-value width of a peak of the (001?) face of the dielectric film in an Out-of-plane rocking curve X ray diffraction measurement; and Wa is a half-value width of a peak of the (h?00) face of the dielectric film in an In-plane rocking curve X ray diffraction measurement.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: May 10, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroshi Aoto, Kenichi Takeda, Tetsuro Fukui, Toshihiro Ifuku
  • Patent number: 7857431
    Abstract: A piezoelectric substance element has a piezoelectric substance film and a pair of electrodes connected to the piezoelectric substance film on a substrate, and a main component of the piezoelectric substance film is Pb(Zr, Ti)O3, a composition ratio of Zr/(Zr+Ti) is over 0.4 but less than 0.7, the piezoelectric substance film is a film having at last a tetragonal crystal a-domain and a c-domain within a range of ±10° with respect to the surface of the substrate, and a volume rate of the c-domain to the total of the a-domain and the c-domain is equal to or larger than 20% and equal to or smaller than 60%.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: December 28, 2010
    Assignees: Canon Kabushiki Kaisha, Tokyo Institute of Technology
    Inventors: Tetsuro Fukui, Kenichi Takeda, Toshihiro Ifuku, Hiroshi Funakubo, Shintaro Yokoyama, Yong Kwan Kim, Hiroshi Nakaki, Risako Ueno, Shoji Okamoto
  • Patent number: 7759845
    Abstract: An optical element satisfactory in transparency and characteristics as an optical modulation element, and a piezoelectric substance element satisfactory in precision and reproducibility as a fine element such as MEMS can be provided. The piezoelectric substance element includes, on a substrate, at least a first electrode, a piezoelectric substance film and a second electrode. The piezoelectric substance film does not contain a layer-structured boundary plane; the crystal phase constituting the piezoelectric substance film comprises at least two of a tetragonal, a rhombohedral, a pseudocubic, an orthorhombic and a monoclinic; and the piezoelectric substance film includes, in a portion in which a change in the composition is within a range of ±2%, a portion where a proportion of the different crystal phases changes gradually in a thickness direction of the film.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: July 20, 2010
    Assignees: Canon Kabushiki Kaisha, Tokyo Institute of Technology
    Inventors: Tetsuro Fukui, Kenichi Takeda, Katsumi Aoki, Toshihiro Ifuku, Takanori Matsuda, Hiroshi Funakubo, Shintaro Yokoyama, Takashi Katoda, Ken Nishida
  • Patent number: 7736433
    Abstract: BaTiO3—PbTiO3 series single crystal is single-crystallized by heating BaTiO3—PbTiO3 compact powder member or sintered member having a smaller Pb-containing mol number than Ba-containing mol number, while keeping the powder or substance in non-molten condition. In this way, this single crystal can be manufactured at a crystal growing speed faster still and stabilized more, significantly contributing to improving the dielectric loss and electromechanical coupling coefficient for the provision of excellent BaTiO3—PbTiO3 series single crystal in various properties, as well as for the provision of piezoelectric material having a small ratio of lead content, which is particularly excellent in piezoelectric property and productivity.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: June 15, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroshi Aoto, Akira Unno, Tetsuro Fukui, Akio Ikesue
  • Publication number: 20100052113
    Abstract: There are disclosed an epitaxial film, comprising: heating an Si substrate provided with an SiO2 layer with a film thickness of 1.0 nm or more to 10 nm or less on a surface of the substrate; and forming on the SiO2 layer by use of a metal target represented by the following composition formula: yA(1?y)B??(1), in which A is one or more elements selected from the group consisting of rare earth elements including Y and Sc, B is Zr, and y is a numeric value of 0.03 or more to 0.20 or less, the epitaxial film represented by the following composition formula: xA2O3?(1?x)BO2??(2), in which A and B are respectively same elements as A and B of the composition formula (1), and x is a numeric value of 0.010 or more to 0.035 or less.
    Type: Application
    Filed: March 5, 2008
    Publication date: March 4, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Jumpei Hayashi, Takanori Matsuda, Tetsuro Fukui, Hiroshi Funakubo
  • Patent number: 7646140
    Abstract: There is disclosed a piezoelectric element having, on a substrate, a piezoelectric body and a pair of electrodes which come in contact with the piezoelectric body, wherein the piezoelectric body consists of a perovskite type oxide represented by the following formula (1): (Bi,Ba)(M,Ti)O3??(1) in which M is an atom of one element selected from the group consisting of Mn, Cr, Cu, Sc, In, Ga, Yb, Al, Mg, Zn, Co, Zr, Sn, Nb, Ta and W, or a combination of the atoms of the plurality of elements.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: January 12, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Katsumi Aoki, Kenichi Takeda, Tetsuro Fukui, Hiroshi Funakubo
  • Patent number: 7622852
    Abstract: The invention provides a piezoelectric film having a large piezoelectric property, and a piezoelectric element, a liquid discharge head and a liquid discharge apparatus utilizing the same. The piezoelectric film is formed by an epitaxial oxide of <100> orientation having at least a tetragonal crystal structure, in which the oxide is a perovskite type composite oxide represented by a general formula ABO3 and contains at least domains C, D and E of [100] orientation having mutual deviation in crystal direction, where the angular deviation between [100] directions in domains C and D, in domains D and E, in domains C and E and in domains D and E are respectively 5° or less, 5° or less, 0.3° or less, and 0.3° or more, and the angular deviation between [001] directions in domains C and E and in domains D and E are respectively 1.0° or more, and 1.0° or more.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: November 24, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toshihiro Ifuku, Tetsuro Fukui, Kenichi Takeda, Hiroshi Funakubo, Hiroshi Nakaki, Rikyu Ikariyama, Osami Sakata
  • Patent number: 7618131
    Abstract: A piezoelectric element structure comprises a supporting substrate, and a piezoelectric film supported on the supporting substrate, in which the piezoelectric film contains a first layer, and a second layer having zirconium, each provided with perovskite structure, and formed to be in contact with each other or laminated through an intermediate layer, and the temperature is set at 500° C. or more at the time of thin film formation so as to provide the piezoelectric film, and a quick cooling is given from the thin film formation temperature at least to 450° C. with a cooling speed of 30° C./min or more for the formation thereof. The piezoelectric film thus formed is in a small thickness as compared with the conventional piezoelectric film, but presents a large piezoelectric constant, hence making it possible to perform efficient microprocessing thereof reliably.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: November 17, 2009
    Assignees: Canon Kabushiki Kaisha
    Inventors: Kiyotaka Wasa, Akira Unno, Tetsuro Fukui, Takanori Matsuda
  • Publication number: 20090273257
    Abstract: A piezoelectric substance which is made of oxide with perovskite type structure which is made of ABO3, where a principal component of A is Pb, and principal components of B contain at least two kinds of elements among Nb, Mg, Zn, Sc, Cd, Ni, Mn, Co, Yb, In, and Fe, and Ti, characterized by being a uniaxial orientation crystal or a single crystal which has an a-domain and a c-domain of tetragonal.
    Type: Application
    Filed: July 13, 2007
    Publication date: November 5, 2009
    Applicants: CANON KABUSHIKI KAISHA, TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Toshihiro Ifuku, Kenichi Takeda, Tetsuro Fukui, Hiroshi Funakubo
  • Patent number: 7567022
    Abstract: To provide a film forming method capable of obtaining a high-quality perovskite type oxide thin film, piezoelectric element having a piezoelectric substance constituted of the thin film formed by the film forming method, liquid discharge head having the piezoelectric element and liquid discharge apparatus having the liquid discharge head. A method for forming a perovskite type oxide thin film having a composition expressed by (A1x, A2y A3z) (B1j, B2k, B3l, B4m B5n)Op is included, which is a film forming method having a plurality of steps for supplying a material containing the elements onto the substrate, dividing the elements A1 to A3 and B1 to B5 into a plurality of groups and supplying each material containing the elements included in the groups onto the substrate in separate steps.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: July 28, 2009
    Assignees: Canon Kabushiki Kaisha, Tokyo Institute of Technology
    Inventors: Tetsuro Fukui, Kenichi Takeda, Takanori Matsuda, Hiroshi Funakubo, Shintaro Yokoyama