Patents by Inventor Tetsuya Nakashima
Tetsuya Nakashima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12116285Abstract: A silica that is superior in terms of fluidity, oil absorption ability, and compression moldability to conventional silica used as a pharmaceutical additive, and is suitable as an additive for formulations such as pharmaceuticals. A porous silica particle composition having the following properties: (1) a BET specific surface area from 250 to 1,000 m2/g; (2) an average particle diameter from 1 to 150 ?m; (3) a pore volume from 0.1 to 8.0 cm3/g; and (4) an oil absorption capacity from 2.2 to 5.0 mL/g.Type: GrantFiled: October 4, 2019Date of Patent: October 15, 2024Assignee: FUJI CHEMICAL INDUSTRIES CO., LTD.Inventors: Koji Hoda, Hiroshi Kawaguchi, Teppei Shibata, Tadashi Fukami, Tadashi Yoshigai, Tatsuki Ueno, Yo Nakashima, Tetsuya Oonuki, Hitoshi Sakai
-
Publication number: 20240307581Abstract: An air treatment device includes a casing having an opening, an air passage formed in the casing, a first unit disposed in the air passage, a predetermined functional component disposed in the air passage, an irradiator configured to irradiate the functional component with ultraviolet rays, and a light blocking member arranged for air in the air passage to pass through the light blocking member. The first unit is removable from the casing through the opening. The light blocking member is arranged to block the ultraviolet rays emitted from the irradiator. The light blocking member is disposed between the first unit and the irradiator.Type: ApplicationFiled: May 28, 2024Publication date: September 19, 2024Inventors: Takayoshi OKAMOTO, Tetsuya YAMASHITA, Atsuo NAKASHIMA, Masato MIYAGAMI
-
Patent number: 10865134Abstract: A wavelength-selective transmissive glass has a light transmittance Tmore than 315 nm and 400 nm or less at a wavelength of more than 315 nm and 400 nm or less represented by the formula shown below of 1% or more in terms of a plate thickness of 6 mm and a light transmittance T315 nm or less at a wavelength of 315 nm or less represented by the formula shown below of 60% or less in terms of a plate thickness of 6 mm. Ak is a weighting factor at a wavelength k (nm) for calculating T (light transmittance) defined in ISO-9050:2003, and Tk is a transmittance at the wavelength k (nm) in terms of a plate thickness of 6 mm: Tmore than 315 nm and 400 nm or less=(?k=more than 315400Ak×Tk)/(?k=more than 315400Ak) T315 nm or less=(?k=300315Ak×Tk)/(?k=300315Ak).Type: GrantFiled: June 1, 2018Date of Patent: December 15, 2020Assignees: AGC Inc., TSUBOTA LABORATORY, INC.Inventors: Kensuke Nagai, Tetsuya Nakashima, Yutaka Kuroiwa, Hiroyuki Hijiya, Masamichi Tanida, Akio Koike, Manabu Nishizawa, Kazuo Tsubota, Toshihide Kurihara, Hidemasa Torii
-
Patent number: 10788172Abstract: A glass plate, with a thickness ? of 1.0 mm or more, having first and second main surfaces and end surfaces, includes 1 to 80 weight ppm of iron in terms of Fe2O3 with 0.1 to 10.0 weight ppm of Fe2+; and 0.1 to 10.0 weight ppm of Ni, Mn, Cr, Co and V in total. In a sample with a size of 50 mm×50 mm×? obtained from the glass plate, and an arithmetic average roughness of the main surfaces and first and second cut surfaces being 0.1 ?m or less, a first average absorbance coefficient for a wavelength of 400 to 700 nm measured on the first main surface in a normal direction is 0.009 or less, and a ratio of a second average absorbance coefficient measured on the first cut surface, to the first absorbance coefficient is 1.3 or less.Type: GrantFiled: November 2, 2017Date of Patent: September 29, 2020Assignee: AGC Inc.Inventors: Yusuke Arai, Naoya Wada, Hiroyuki Hijiya, Tetsuya Nakashima
-
Patent number: 10766806Abstract: The present invention pertains to a glass for a data storage medium substrate which contains a specific amount of each of SiO2, Al2O3, MgO, CaO, SrO, BaO, Li2O, Na2O, and K2O, in molar percentage based on the oxides, and does not substantially contain B2O3 or ZrO2, wherein the sum of the Li2O, Na2O, and K2O contents (R2O), the molar ratio of the SiO2 content to the Al2O3 content (SiO2/Al2O3), and the molar ratio of the sum of the SiO2 and Al2O3 contents (SiO2+Al2O3) to R2O[(SiO2+Al2O3)/R2O] fall within their specific ranges, formula (1): 90<[SiO2]+2×[Al2O3]+0.8×[RO]?0.5×[R2O] [in formula (1), RO represents the sum of the MgO, CaO, SrO, and BaO contents] is satisfied, and the glass transition point Tg, the alkali resistance, and the acid resistance fall within their specific ranges.Type: GrantFiled: April 4, 2018Date of Patent: September 8, 2020Assignee: AGC Inc.Inventors: Eriko Maeda, Hiroyuki Hijiya, Kensuke Nagai, Tetsuya Nakashima, Yutaka Kuroiwa
-
Patent number: 10370286Abstract: To provide glass to be used for chemically tempered glass, of which the strength is less likely to be reduced even when indentations are formed thereon. Glass for chemical tempering, which comprises, as represented by mole percentage based on oxides, from 62 to 68% of SiO2, from 6 to 12% of Al2O3, from 7 to 13% of MgO, from 9 to 17% of Na2O, and from 0 to 7% of K2O, wherein the difference obtained by subtracting the content of Al2O3 from the total content of Na2O and K2O is less than 10%, and when ZrO2 is contained, its content is at most 0.8%. Chemically tempered glass obtained by chemically tempering such glass for chemical tempering. Such chemically tempered glass has a compressive stress layer formed on the glass surface, which has a thickness of at least 30 ?m and a surface compressive stress of at least 550 MPa.Type: GrantFiled: January 15, 2015Date of Patent: August 6, 2019Assignee: AGC Inc.Inventors: Jun Endo, Shusaku Akiba, Kazutaka Ono, Tetsuya Nakashima
-
Patent number: 10189739Abstract: To provide chemically tempered glass which is less likely to break even if scratched. Chemically tempered glass, which comprises, as represented by mole percentage based on the following oxides, from 56 to 72% of SiO2, from 8 to 20% of Al2O3, from 9 to 25% of Na2O, from 0 to 2% of K2O, and from 0 to 15% of MgO, and which has a surface compressive stress of at least 900 MPa and an internal tensile stress of at most 30 MPa. Glass for chemical tempering, which comprises, as represented by mole percentage based on the following oxides, from 56 to 69% of SiO2, from 8 to 16% of Al2O3, from 9 to 22% of Na2O, from 0 to 1% of K2O, from 5.5 to 14% of MgO, from 0 to 2% of ZrO2, and from 0 to 6% of B2O3.Type: GrantFiled: November 30, 2017Date of Patent: January 29, 2019Assignee: AGC Inc.Inventors: Shusaku Akiba, Shigeki Sawamura, Suguru Murayama, Hiroyuki Ohkawa, Yusuke Kobayashi, Kazutaka Ono, Tetsuya Nakashima
-
Publication number: 20180297888Abstract: A wavelength-selective transmissive glass has a light transmittance Tmore than 315 nm and 400 nm or less at a wavelength of more than 315 nm and 400 nm or less represented by the formula shown below of 1% or more in terms of a plate thickness of 6 mm and a light transmittance T315 nm or less at a wavelength of 315 nm or less represented by the formula shown below of 60% or less in terms of a plate thickness of 6 mm. Ak is a weighting factor at a wavelength k (nm) for calculating T (light transmittance) defined in ISO-9050:2003, and Tk is a transmittance at the wavelength k (nm) in terms of a plate thickness of 6 mm: Tmore than 315 nm and 400 nm or less=(?k=more than 315400 Ak×Tk)/(?k=more than 315400 Ak) T315 nm or less=(?k=300315 Ak×Tk)/(?k=300315 Ak).Type: ApplicationFiled: June 1, 2018Publication date: October 18, 2018Applicants: ASAHI GLASS COMPANY, LIMITED, TSUBOTA LABORATORY, INC.Inventors: Kensuke NAGAI, Tetsuya NAKASHIMA, Yutaka KUROIWA, Hiroyuki HIJIYA, Masamichi TANIDA, AKIO KOIKE, Manabu NISHIZAWA, Kazuo TSUBOTA, Toshihide KURIHARA, Hidemasa TORII
-
Glass plate, light guide plate unit, planar light-emitting device, and liquid crystal display device
Patent number: 10082616Abstract: To provide a glass plate excellent in the internal transmittance of light rays in the visible region. A glass plate consisting of multicomponent oxide glass, which has an effective optical path length of from 25 to 200 cm, a thickness of from 0.5 to 10 mm, and an average internal transmittance in the visible region of at least 80% and a chromaticity Y of tristimulus values in the XYZ colorimetric system as defined in JIS Z8701 (Appendix) of at least 90%, under the effective optical path length.Type: GrantFiled: April 27, 2016Date of Patent: September 25, 2018Assignee: AGC Inc.Inventors: Hiroyuki Hijiya, Yusuke Arai, Yutaka Kuroiwa, Tetsuya Nakashima, Yuki Kondo -
Publication number: 20180222789Abstract: The present invention pertains to a glass for a data storage medium substrate which contains a specific amount of each of SiO2, Al2O3, MgO, CaO, SrO, BaO, Li2O, Na2O, and K2O, in molar percentage based on the oxides, and does not substantially contain B2O3 or ZrO2, wherein the sum of the Li2O, Na2O, and K2O contents (R2O), the molar ratio of the SiO2 content to the Al2O3 content (SiO2/Al2O3), and the molar ratio of the sum of the SiO2 and Al2O3 contents (SiO2+Al2O3) to R2O [(SiO2+Al2O3)/R2O] fall within their specific ranges, formula (1): 90<[SiO2]+2×[Al2O3]+0.8×[RO]?0.5×[R2O] [in formula (1), RO represents the sum of the MgO, CaO, SrO, and BaO contents] is satisfied, and the glass transition point Tg, the alkali resistance, and the acid resistance fall within their specific ranges.Type: ApplicationFiled: April 4, 2018Publication date: August 9, 2018Applicant: ASAHI GLASS COMPANY, LIMITEDInventors: Eriko MAEDA, Hiroyuki HIJIYA, Kensuke NAGAI, Tetsuya NAKASHIMA, Yutaka KUROIWA
-
Publication number: 20180079680Abstract: To provide chemically tempered glass which is less likely to break even if scratched. Chemically tempered glass, which comprises, as represented by mole percentage based on the following oxides, from 56 to 72% of SiO2, from 8 to 20% of Al2O3, from 9 to 25% of Na2O, from 0 to 2% of K2O, and from 0 to 15% of MgO, and which has a surface compressive stress of at least 900 MPa and an internal tensile stress of at most 30 MPa. Glass for chemical tempering, which comprises, as represented by mole percentage based on the following oxides, from 56 to 69% of SiO2, from 8 to 16% of Al2O3, from 9 to 22% of Na2O, from 0 to 1% of K2O, from 5.5 to 14% of MgO, from 0 to 2% of ZrO2, and from 0 to 6% of B2O3.Type: ApplicationFiled: November 30, 2017Publication date: March 22, 2018Applicant: ASAHI GLASS COMPANY, LIMITEDInventors: Shusaku AKIBA, Shigeki SAWAMURA, Suguru MURAYAMA, Hiroyuki OHKAWA, Yusuke KOBAYASHI, Kazutaka ONO, Tetsuya NAKASHIMA
-
Publication number: 20180066814Abstract: A glass plate, with a thickness ? of 1.0 mm or more, having first and second main surfaces and end surfaces, includes 1 to 80 weight ppm of iron in terms of Fe2O3 with 0.1 to 10.0 weight ppm of Fe2+; and 0.1 to 10.0 weight ppm of Ni, Mn, Cr, Co and V in total. In a sample with a size of 50 mm×50 mm×8 obtained from the glass plate, and an arithmetic average roughness of the main surfaces and first and second cut surfaces being 0.1 ?m or less, a first average absorbance coefficient for a wavelength of 400 to 700 nm measured on the first main surface in a normal direction is 0.009 or less, and a ratio of a second average absorbance coefficient measured on the first cut surface, to the first absorbance coefficient is 1.3 or less.Type: ApplicationFiled: November 2, 2017Publication date: March 8, 2018Applicant: Asahi Glass Company, LimitedInventors: Yusuke ARAI, Naoya Wada, Hiroyuki Hijiya, Tetsuya Nakashima
-
Patent number: 9896374Abstract: To provide chemically tempered glass which is less likely to break even if scratched. Chemically tempered glass, which comprises, as represented by mole percentage based on the following oxides, from 56 to 72% of SiO2, from 8 to 20% of Al2O3, from 9 to 25% of Na2O, from 0 to 2% of K2O, and from 0 to 15% of MgO, and which has a surface compressive stress of at least 900 MPa and an internal tensile stress of at most 30 MPa. Glass for chemical tempering, which comprises, as represented by mole percentage based on the following oxides, from 56 to 69% of SiO2, from 8 to 16% of Al2O3, from 9 to 22% of Na2O, from 0 to 1% of K2O, from 5.5 to 14% of MgO, from 0 to 2% of ZrO2, and from 0 to 6% of B2O3.Type: GrantFiled: March 9, 2017Date of Patent: February 20, 2018Assignee: Asahi Glass Company, LimitedInventors: Shusaku Akiba, Shigeki Sawamura, Suguru Murayama, Hiroyuki Ohkawa, Yusuke Kobayashi, Kazutaka Ono, Tetsuya Nakashima
-
Publication number: 20180044232Abstract: The present invention provides a cover glass for a display, having high durability to slow cracking and strong abraded strength even though a compressive stress is large and a depth of a compressive stress layer is deep. The present invention relates to a cover glass for a display, in which a depth of a compressive stress layer (DOL) is 30 ?m or more, a surface compressive stress is 300 MPa or more, a position (HW) at which a compressive stress is half of a value of the surface compressive stress is a position of 8 ?m or more from a glass surface, and the depth of the compressive stress layer (DOL) and the position (HW) at which the compressive stress is half of the value of the surface compressive stress satisfy the following formula: 0.05?HW/DOL?0.23??(1).Type: ApplicationFiled: October 5, 2017Publication date: February 15, 2018Applicant: ASAHI GLASS COMPANY, LIMITEDInventors: Seiki OHARA, Kazutaka ONO, Tetsuya NAKASHIMA, Hiroyuki OHKAWA
-
Publication number: 20180037498Abstract: The present invention provides a cover glass for a display, having high durability to slow cracking and strong abraded strength even though a compressive stress is large and a depth of a compressive stress layer is deep. The present invention relates to a cover glass for a display, in which a depth of a compressive stress layer (DOL) is 30 ?m or more, a surface compressive stress is 300 MPa or more, a position (HW) at which a compressive stress is half of a value of the surface compressive stress is a position of 8 ?m or more from a glass surface, and the depth of the compressive stress layer (DOL) and the position (HW) at which the compressive stress is half of the value of the surface compressive stress satisfy the following formula: 0.05?HW/DOL?0.23??(1).Type: ApplicationFiled: September 1, 2017Publication date: February 8, 2018Applicant: ASAHI GLASS COMPANY, LIMITEDInventors: Seiki Ohara, Kazutaka Ono, Tetsuya Nakashima, Hiroyuki Ohkawa
-
Patent number: 9840435Abstract: The present invention provides a cover glass for a display, having high durability to slow cracking and strong abraded strength even though a compressive stress is large and a depth of a compressive stress layer is deep. The present invention relates to a cover glass for a display, in which a depth of a compressive stress layer (DOL) is 30 ?m or more, a surface compressive stress is 300 MPa or more, a position (HW) at which a compressive stress is half of a value of the surface compressive stress is a position of 8 ?m or more from a glass surface, and the depth of the compressive stress layer (DOL) and the position (HW) at which the compressive stress is half of the value of the surface compressive stress satisfy the following formula: 0.05?HW/DOL?0.23??(1).Type: GrantFiled: June 11, 2014Date of Patent: December 12, 2017Assignee: ASAHI GLASS COMPANY, LIMITEDInventors: Seiki Ohara, Kazutaka Ono, Tetsuya Nakashima, Hiroyuki Ohkawa
-
Publication number: 20170217824Abstract: The present invention provides a cover glass for a display, having high durability to slow cracking and strong abraded strength even though a compressive stress is large and a depth of a compressive stress layer is deep. The present invention relates to a cover glass for a display, in which a depth of a compressive stress layer (DOL) is 30 ?m or more, a surface compressive stress is 300 MPa or more, a position (HW) at which a compressive stress is half of a value of the surface compressive stress is a position of 8 ?m or more from a glass surface, and the depth of the compressive stress layer (DOL) and the position (HW) at which the compressive stress is half of the value of the surface compressive stress satisfy the following formula: 0.05?HW/DOL?0.23??(1).Type: ApplicationFiled: April 7, 2017Publication date: August 3, 2017Applicant: ASAHI GLASS COMPANY, LIMITEDInventors: SEIKI OHARA, KAZUTAKA ONO, TETSUYA NAKASHIMA, HIROYUKI OHKAWA
-
Patent number: 9714193Abstract: The present invention relates to a float glass for chemical strengthening, containing a bottom surface coming into contact with a molten metal at the time of forming and a top surface opposing the bottom surface, in which a difference ?(N—Na2O2) determined by subtracting a square of a normalized Na2O surface concentration of the bottom surface which is a value obtained by dividing an Na2O concentration in the bottom surface by an Na2O concentration at a depth position of 100 ?m therefrom, from a square of a normalized Na2O surface concentration of the top surface which is a value obtained by dividing an Na2O concentration in the top surface by an Na2O concentration at a depth position of 100 ?m therefrom, is 0.040 or less.Type: GrantFiled: June 29, 2015Date of Patent: July 25, 2017Assignee: ASAHI GLASS COMPANY, LIMITEDInventors: Yuichi Suzuki, Tetsuya Nakashima, Jun Sasai
-
Publication number: 20170183254Abstract: To provide chemically tempered glass which is less likely to break even if scratched. Chemically tempered glass, which comprises, as represented by mole percentage based on the following oxides, from 56 to 72% of SiO2, from 8 to 20% of Al2O3, from 9 to 25% of Na2O, from 0 to 2% of K2O, and from 0 to 15% of MgO, and which has a surface compressive stress of at least 900 MPa and an internal tensile stress of at most 30 MPa. Glass for chemical tempering, which comprises, as represented by mole percentage based on the following oxides, from 56 to 69% of SiO2, from 8 to 16% of Al2O3, from 9 to 22% of Na2O, from 0 to 1% of K2O, from 5.5 to 14% of MgO, from 0 to 2% of ZrO2, and from 0 to 6% of B2O3.Type: ApplicationFiled: March 9, 2017Publication date: June 29, 2017Applicant: ASAHI GLASS COMPANY, LIMITEDInventors: Shusaku Akiba, Shigeki Sawamura, Suguru Murayama, Hiroyuki Ohkawa, Yusuke Kobayashi, Kazutaka Ono, Tetsuya Nakashima
-
Patent number: 9656906Abstract: To provide chemically tempered glass which is less likely to break even if scratched. Chemically tempered glass, which comprises, as represented by mole percentage based on the following oxides, from 56 to 72% of SiO2, from 8 to 20% of Al2O3, from 9 to 25% of Na2O, from 0 to 2% of K2O, and from 0 to 15% of MgO, and which has a surface compressive stress of at least 900 MPa and an internal tensile stress of at most 30 MPa. Glass for chemical tempering, which comprises, as represented by mole percentage based on the following oxides, from 56 to 69% of SiO2, from 8 to 16% of Al2O3, from 9 to 22% of Na2O, from 0 to 1% of K2O, from 5.5 to 14% of MgO, from 0 to 2% of ZrO2, and from 0 to 6% of B2O3.Type: GrantFiled: April 17, 2014Date of Patent: May 23, 2017Assignee: Asahi Glass Company, LimitedInventors: Shusaku Akiba, Shigeki Sawamura, Suguru Murayama, Hiroyuki Ohkawa, Yusuke Kobayashi, Kazutaka Ono, Tetsuya Nakashima