Patents by Inventor Tetsuya Nakashima

Tetsuya Nakashima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160023945
    Abstract: The present invention relates to a float glass for chemical strengthening, containing a bottom surface coming into contact with a molten metal at the time of forming and a top surface opposing the bottom surface, in which a difference ?(N—Na2O2) determined by subtracting a square of a normalized Na2O surface concentration of the bottom surface which is a value obtained by dividing an Na2O concentration in the bottom surface by an Na2O concentration at a depth position of 100 ?M therefrom, from a square of a normalized Na2O surface concentration of the top surface which is a value obtained by dividing an Na2O concentration in the top surface by an Na2O concentration at a depth position of 100 ?m therefrom, is 0.040 or less.
    Type: Application
    Filed: June 29, 2015
    Publication date: January 28, 2016
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Yuichi SUZUKI, Tetsuya NAKASHIMA, Jun SASAI
  • Publication number: 20150378933
    Abstract: A storage management apparatus configured to allocate physical addresses in a physical storage area, to virtual addresses in a virtual storage area for storing data is provided. The storage management apparatus includes a processor that executes a process to define, in the physical area, a continuous area having a plurality of continuous physical addresses, and define, based on a virtual address to which a physical address in the continuous area has initially been allocated, an allocation range of virtual addresses for allocating the defined continuous area; and allocate a physical address in the defined continuous area to a virtual address in the defined relation range.
    Type: Application
    Filed: May 21, 2015
    Publication date: December 31, 2015
    Inventors: Fumihiro Ooba, Shuko Yasumoto, Hisashi Osanai, Shunsuke Motoi, Daisuke Fujita, TETSUYA NAKASHIMA, Eiji Hamamoto
  • Publication number: 20150147538
    Abstract: A chemically strengthened glass sheet, which has front and back main surfaces and an edge surface between the front and back main surfaces, has undergone a chemical strengthening treatment and has an approximately rectangular shape, in which the chemically strengthened glass sheet has a surface compressive stress of 800 MPa or more, and an internal tensile stress of 42 MPa or less.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 28, 2015
    Applicant: Asahi Glass Company, Limited
    Inventors: Masayuki ISHIMARU, Hiroyuki OKAWA, Syusaku AKIBA, Shigeki SAWAMURA, Kazutaka ONO, Tetsuya NAKASHIMA, Izuru KASHIMA, Yusuke KOBAYASHI, Suguru MURAYAMA, Aya YAMAMOTO
  • Publication number: 20150126354
    Abstract: To provide glass to be used for chemically tempered glass, of which the strength is less likely to be reduced even when indentations are formed thereon. Glass for chemical tempering, which comprises, as represented by mole percentage based on oxides, from 62 to 68% of SiO2, from 6 to 12% of Al2O3, from 7 to 13% of MgO, from 9 to 17% of Na2O, and from 0 to 7% of K2O, wherein the difference obtained by subtracting the content of Al2O3 from the total content of Na2O and K2O is less than 10%, and when ZrO2 is contained, its content is at most 0.8%. Chemically tempered glass obtained by chemically tempering such glass for chemical tempering. Such chemically tempered glass has a compressive stress layer formed on the glass surface, which has a thickness of at least 30 ?m and a surface compressive stress of at least 550 MPa.
    Type: Application
    Filed: January 15, 2015
    Publication date: May 7, 2015
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Jun ENDO, Shusaku AKIBA, Kazutaka ONO, Tetsuya NAKASHIMA
  • Patent number: 9023421
    Abstract: To provide a method for producing a magnetic disk, whereby a magnetic recording layer is formed at a high temperature. A method for producing a magnetic disk, which comprises a step of forming a magnetic recording layer on a glass substrate having a temperature of at least 550° C., wherein the glass substrate comprises, as represented by mol percentage, from 62 to 74% of SiO2, from 6 to 18% of Al2O3, from 2 to 15% of B2O3 and from 8 to 21%, in total, of at least one component selected from MgO, CaO, SrO and BaO, provided that the total content of the above seven components is at least 95%, and further contains less than 1%, in total, of at least one component selected from Li2O, Na2O and K2O, or contains none of these three components.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: May 5, 2015
    Assignee: Asahi Glass Company, Limited
    Inventor: Tetsuya Nakashima
  • Publication number: 20150064411
    Abstract: A front glass plate for a stacked structure includes greater than or equal to 5 mol % of Al2O3, in terms of an oxide, as a component, 50% crack initiation load of the front glass plate being greater than or equal to 0.5 kg.
    Type: Application
    Filed: November 11, 2014
    Publication date: March 5, 2015
    Applicant: Asahi Glass Company, Limited
    Inventors: Jun SASAI, Kazutaka Ono, Tetsuya Nakashima, Keisuke Abe, Yasuyuki Kameyama, Nana Sato, Yasumasa Kato, Masao Fukami, Kazuhiko Mitarai
  • Publication number: 20140370264
    Abstract: The present invention provides a cover glass for a display, having high durability to slow cracking and strong abraded strength even though a compressive stress is large and a depth of a compressive stress layer is deep. The present invention relates to a cover glass for a display, in which a depth of a compressive stress layer (DOL) is 30 ?m or more, a surface compressive stress is 300 MPa or more, a position (HW) at which a compressive stress is half of a value of the surface compressive stress is a position of 8 ?m or more from a glass surface, and the depth of the compressive stress layer (DOL) and the position (HW) at which the compressive stress is half of the value of the surface compressive stress satisfy the following formula: 0.05?HW/DOL?0.23??(1).
    Type: Application
    Filed: June 11, 2014
    Publication date: December 18, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Seiki OHARA, Kazutaka Ono, Tetsuya Nakashima, Hiroyuki Ohkawa
  • Publication number: 20140364298
    Abstract: A Glass for chemical tempering, which includes, as represented by mole percentage based on the following oxides, from 60 to 75% of SiO2, from 5 to 15% of Al2O3, more than 7 and at most 12% of MgO, from 0 to 3% of CaO, from 0 to 3% of ZrO2, from 10 to 20% of Li2O, from 0 to 8% of Na2O and from 0 to 5% of K2O, and has a total content R2O of Li2O, Na2O and K2O of at most 25%, and a ratio Li2O/R2O of the Li2O content to R2O of from 0.5 to 1.0.
    Type: Application
    Filed: August 27, 2014
    Publication date: December 11, 2014
    Applicant: Asahi Glass Company, Limited
    Inventors: Seiki OHARA, Kazutaka ONO, Tetsuya NAKASHIMA
  • Patent number: 8895463
    Abstract: A glass substrate for a CIGS solar cell, having high cell efficiency and high glass transition temperature is provided. The glass substrate for a vapor-deposited CIGS film solar cell has a glass transition temperature of at least 580° C. and an average thermal expansion coefficient of from 70×10?7 to 100×10?7/° C., wherein the ratio of the average total amount of Ca, Sr and Ba within from 10 to 40 nm in depth from the surface of the glass substrate to the total amount of Ca, Sr and Ba at 5,000 nm in depth from the surface of the glass substrate is at most 0.35, and the ratio of the average Na amount within from 10 to 40 nm in depth from the surface of the glass substrate after heat treatment to such average Na amount before the heat treatment is at least 1.5.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: November 25, 2014
    Assignee: Asahi Glass Company, Limited
    Inventors: Yutaka Kuroiwa, Yuichi Yamamoto, Tomomi Abe, Tetsuya Nakashima, Yasushi Kawamoto, Shigeru Niki, Shogo Ishizuka
  • Publication number: 20140226090
    Abstract: To provide chemically tempered glass which is less likely to break even if scratched. Chemically tempered glass, which comprises, as represented by mole percentage based on the following oxides, from 56 to 72% of SiO2, from 8 to 20% of Al2O3, from 9 to 25% of Na2O, from 0 to 2% of K2O, and from 0 to 15% of MgO, and which has a surface compressive stress of at least 900 MPa and an internal tensile stress of at most 30 MPa. Glass for chemical tempering, which comprises, as represented by mole percentage based on the following oxides, from 56 to 69% of SiO2, from 8 to 16% of Al2O3, from 9 to 22% of Na2O, from 0 to 1% of K2O, from 5.5 to 14% of MgO, from 0 to 2% of ZrO2, and from 0 to 6% of B2O3.
    Type: Application
    Filed: April 17, 2014
    Publication date: August 14, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Shusaku AKIBA, Shigeki SAWAMURA, Suguru MURAYAMA, Hiroyuki OHKAWA, Yusuke KOBAYASHI, Kazutaka ONO, Tetsuya NAKASHIMA
  • Publication number: 20140209169
    Abstract: A glass substrate for a CdTe solar cell includes a base composition includes, in terms of mol % on a basis of following oxides: from 60 to 75% of SiO2; from 1 to 7.5% of Al2O3; from 0 to 1% of B2O3; from 8.5 to 12.5% of MgO; from 1 to 6.5% of CaO; from 0 to 3% of SrO; from 0 to 3% of BaO; from 0 to 3% of ZrO2; from 1 to 8% of Na2O; and from 2 to 12% of K2O, wherein MgO+CaO+SrO+BaO is from 10 to 24%, Na2O+K2O is from 5 to 15%, MgO/Al2O3 is 1.3 or more, (2Na2O+K2O+SrO+BaO)/(Al2O3+ZrO2) is 3.3 or less, Na2O/K2O is from 0.2 to 2.0, Al2O3??0.94MgO+11, and CaO?0.48MgO+6.5.
    Type: Application
    Filed: March 28, 2014
    Publication date: July 31, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Yu HANAWA, Yutaka KUROIWA, Tetsuya NAKASHIMA, Yuki KONDO
  • Patent number: 8691711
    Abstract: Glass for a display device, which comprises, as represented by mole percentage based on the following oxides, from 61 to 72% of SiO2, from 8 to 17% of Al2O3, from 6 to 18% of Li2O, from 2 to 15% of Na2O, from 0 to 8% of K2O, from 0 to 6% of MgO, from 0 to 6% of CaO, from 0 to 4% of TiO2, and from 0 to 2.5% of ZrO2, and having a total content R2O of Li2O, Na2O and K2O of from 15 to 25%, a ratio Li2O/R2O of the Li2O content to R2O of from 0.35 to 0.8, and a total content of MgO and CaO of from 0 to 9%.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: April 8, 2014
    Assignee: Asahi Glass Company, Limited
    Inventors: Tetsuya Nakashima, Seiki Ohara, Tatsuo Nagashima
  • Publication number: 20130306145
    Abstract: A glass substrate for a CIGS solar cell containing specific amounts of SiO2, Al2O3, B2O3, MgO, CaO, SrO, BaO, ZrO2, TiO2, Na2O and K2O, respectively. The glass substrate satisfies the specific requirements regarding MgO+CaO+SrO+BaO, Na2O+K2O, MgO/Al2O3, (2Na2O+K2O+SrO+BaO)/(Al2O3+ZrO2), Na2O/K2O, the relation of Al2O3 and MgO, and the relation of CaO and MgO, respectively. The glass substrate has a glass transition temperature of 640° C. or higher, an average coefficient of thermal expansion within a range of 50 to 350° C. of 70×10?7 to 90×10?7/° C., the temperature (T4) of 1,230° C. or lower, the temperature (T2) of 1,650° C. or lower, and a density of 2.7 g/cm3 or less. The glass substrate satisfies the relationship of T4?TL??30° C.
    Type: Application
    Filed: July 29, 2013
    Publication date: November 21, 2013
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Yu HANAWA, Yutaka Kuroiwa, Tetsuya Nakashima, Reo Usui, Takeshi Tomizawa, Tomomi Sekine
  • Publication number: 20130302617
    Abstract: To provide glass to be used for chemically tempered glass which is hardly broken even when flawed. Glass for chemical tempering, which comprises, as represented by mole percentage based on the following oxides, from 65 to 85% of SiO2, from 3 to 15% of Al2O3, from 5 to 15% of Na2O, from 0 and less than 2% of K2O, from 0 to 15% of MgO and from 0 to 1% of ZrO2, and has a total content Si02+Al2O3 of SiO2 and Al2O3 of at most 88%.
    Type: Application
    Filed: July 16, 2013
    Publication date: November 14, 2013
    Applicant: Asahi Glass Company, Limited
    Inventors: Shusaku Akiba, Kazutaka Ono, Jun Endo, Shigeki Sawamura, Tetsuya Nakashima, Yuichi Kuroki
  • Patent number: 8580411
    Abstract: To provide glass to be used for a substrate which is, as a substrate, less susceptible to surface roughening even if subjected to cleaning by means of a strongly acidic solution. Glass for a substrate, which comprises, as represented by mol % based on the following oxides, from 62.5 to 69% of SiO2, from 9 to 15.5% of Al2O3, from 8 to 16 of Li2O, from 0 to 8% of Na2O, from 0 to 7% of K2O and from 0 to 3.5% of ZrO2, provided that SiO2—Al2O3 is at least 53.3%, Li2O+Na2O+K2O is from 17 to 24%, and the total of contents of the above six components is at least 97%.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: November 12, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Jun Endo, Tetsuya Nakashima, Atsuyoshi Takenaka
  • Patent number: 8563149
    Abstract: To provide glass for a data storage medium substrate, whereby high heat resistance can be obtained. Glass for a data storage medium substrate, which comprises, as represented by mol percentage based on the following oxides, from 55 to 70% of SiO2, from 2.5 to 9% of Al2O3, from 0 to 10% of MgO, from 0 to 7% of CaO, from 0.5 to 10% of SrO, from 0 to 12.5% of BaO, from 0 to 2.5% of TiO2, from 0.5 to 3.7% of ZrO2, from 0 to 2.5% of Li2O, from 0 to 8% of Na2O, from 2 to 8% of K2O and from 0.5 to 5% of La2O3, provided that the total content of Al2O3 and ZrO2 (Al2O3+ZrO2) is at most 12%, and the total content of Li2O, Na2O and K2O (R2O) is at most 12%.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: October 22, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Tatsuo Nagashima, Kensuke Nagai, Tetsuya Nakashima, Kei Maeda
  • Publication number: 20130233386
    Abstract: A glass substrate for a Cu—In—Ga—Se solar cell. The glass substrate contains specific oxides with the specific amounts, respectively. The glass substrate has a glass transition temperature of from 650 to 750° C., an average coefficient of thermal expansion within a range of from 50 to 350° C. of from 75×10?7 to 95×10?7/° C., a relationship between a temperature (T4), at which a viscosity reaches 104 dPa·s, and a devitrification temperature (TL) of T4?TL??30° C., a density of 2.6 g/cm3 or less, and a brittleness index of less than 7,000 m?1/2.
    Type: Application
    Filed: April 22, 2013
    Publication date: September 12, 2013
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Yu HANAWA, Yutaka KUROIWA, Tetsuya NAKASHIMA, Reo USUI
  • Patent number: 8518545
    Abstract: To provide glass to be used for chemically tempered glass which is hardly broken even when flawed. Glass for chemical tempering, which comprises, as represented by mole percentage based on the following oxides, from 65 to 85% of SiO2, from 3 to 15% of Al2O3, from 5 to 15% of Na2O, from 0 and less than 2% of K2O, from 0 to 15% of MgO and from 0 to 1% of ZrO2, and has a total content SiO2+Al2O3 of SiO2 and Al2O3 of at most 88%.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 27, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Shusaku Akiba, Kazutaka Ono, Jun Endo, Shigeki Sawamura, Tetsuya Nakashima, Yuichi Kuroki
  • Patent number: 8402790
    Abstract: To provide a process to improve acid resistance of a glass substrate for an information recording medium. A process for producing a glass substrate for an information recording medium, comprising processing a glass formed into a plate by a float process, a down-draw method or a press method, wherein, in cooling of the glass in the last step where the glass has a temperature of at least its strain point, the time during which the glass temperature is at least its strain point and at most a temperature where the glass viscosity is 1010 dPa·s is at least 13 minutes.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: March 26, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Jun Endo, Tetsuya Nakashima
  • Patent number: 8377834
    Abstract: A glass composition for substrates excellent in productivity is provided by lowering the high temperature viscosity while securing characteristics and quality required for FPD substrates, particularly for PDP substrates. A glass composition for substrates, which is characterized by comprising, as represented by mass% based on oxides, from 55 to 75% of SiO2, from 5 to 15% of Al2O3, from 4 to 18% of MgO, from 3 to 12% of CaO, from 4 to 18% of SrO, from 0 to 20% of BaO, from 6 to 20% of Na2O+K2O, from 0.5 to 6% of ZrO2 and from 18 to 25% of MgO+CaO+SrO+BaO, as a glass matrix composition, and containing from 0.001 to 0.6% of SO3, and which is further characterized in that when the viscosity is represented by ?, the temperature satisfying log?=2 is at most 1,545° C. and the devitrification temperature is at most the temperature satisfying log?=4, the thermal expansion coefficient is from 75×10?7 to 90×10?7/° C., the specific gravity is at most 2.8, and the glass transition point is at least 600° C.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: February 19, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Kensuke Nagai, Tetsuya Nakashima, Kei Maeda