Patents by Inventor Tetsuya Nishida

Tetsuya Nishida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965123
    Abstract: A red phosphor that has optical characteristics and durability under high-temperature and high-humidity environments, and a method for producing the same. The red phosphor includes a Mn-activated complex fluoride represented by the following general formula (1) and bismuth: A2MF6:Mn4+??(1) wherein A represents at least one alkali metal element selected from the group consisting of lithium, sodium, potassium, rubidium and cesium, and M represents at least one tetravalent element selected from the group consisting of silicon, germanium, tin, titanium, zirconium and hafnium.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: April 23, 2024
    Assignee: STELLA CHEMIFA CORPORATION
    Inventors: Hiroaki Takatori, Shinya Kumazawa, Tetsuya Arakawa, Tetsuo Nishida
  • Publication number: 20230229745
    Abstract: An analysis device according to the present disclosure, which obtains data about a sample, is characterized by comprising: a placement unit on which the sample is placed; a data obtaining unit which obtains data about the sample; a user interface unit which allows a user to make access to processing of the analysis device; a communication unit which communicates with an online authentication unit that authenticates the user online; an offline authentication unit which authenticates the user offline when the communication unit cannot communicate with the online authentication unit; and a restriction unit which restricts the processing accessible to the user when the user is authenticated by the offline authentication unit as compared to when the user is authenticated by the online authentication unit.
    Type: Application
    Filed: July 10, 2020
    Publication date: July 20, 2023
    Inventors: Sakiko NARIKAWA, Takayuki NODA, Tetsuya NISHIDA, Keiichi KOBAYASHI
  • Publication number: 20230155348
    Abstract: A semiconductor optical amplifier integrated laser includes a semiconductor laser oscillator portion that oscillates laser light having a wavelength included in a gain band and a semiconductor optical amplifier portion that amplifies laser light output from the semiconductor laser oscillator portion. The semiconductor laser oscillator portion and the semiconductor optical amplifier portion have one common p-i-n structure, the common p-i-n structure includes an active layer, a cladding layer provided apart from the active layer, and a common functional layer formed in the cladding layer, and the common functional layer includes a first portion that reflects light having a wavelength within the gain band in the semiconductor laser oscillator portion and a second portion that transmits light having a wavelength within the gain band in the semiconductor optical amplifier portion.
    Type: Application
    Filed: January 9, 2023
    Publication date: May 18, 2023
    Inventors: Atsushi NAKAMURA, Kaoru Okamoto, Masatoshi Arasawa, Tetsuya Nishida, Yasushi Sakuma, Shigetaka Hamada, Ryosuke Nakajima
  • Patent number: 11552448
    Abstract: A semiconductor optical amplifier integrated laser includes a semiconductor laser oscillator portion that oscillates laser light having a wavelength included in a gain band and a semiconductor optical amplifier portion that amplifies laser light output from the semiconductor laser oscillator portion. The semiconductor laser oscillator portion and the semiconductor optical amplifier portion have one common p-i-n structure, the common p-i-n structure includes an active layer, a cladding layer provided apart from the active layer, and a common functional layer formed in the cladding layer, and the common functional layer includes a first portion that reflects light having a wavelength within the gain band in the semiconductor laser oscillator portion and a second portion that transmits light having a wavelength within the gain band in the semiconductor optical amplifier portion.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: January 10, 2023
    Assignee: Lumentum Japan, Inc.
    Inventors: Atsushi Nakamura, Kaoru Okamoto, Masatoshi Arasawa, Tetsuya Nishida, Yasushi Sakuma, Shigetaka Hamada, Ryosuke Nakajima
  • Publication number: 20210234333
    Abstract: A semiconductor optical amplifier integrated laser includes a semiconductor laser oscillator portion that oscillates laser light having a wavelength included in a gain band and a semiconductor optical amplifier portion that amplifies laser light output from the semiconductor laser oscillator portion. The semiconductor laser oscillator portion and the semiconductor optical amplifier portion have one common p-i-n structure, the common p-i-n structure includes an active layer, a cladding layer provided apart from the active layer, and a common functional layer formed in the cladding layer, and the common functional layer includes a first portion that reflects light having a wavelength within the gain band in the semiconductor laser oscillator portion and a second portion that transmits light having a wavelength within the gain band in the semiconductor optical amplifier portion.
    Type: Application
    Filed: June 15, 2020
    Publication date: July 29, 2021
    Inventors: Atsushi NAKAMURA, Kaoru OKAMOTO, Masatoshi ARASAWA, Tetsuya NISHIDA, Yasushi SAKUMA, Shigetaka HAMADA, Ryosuke NAKAJIMA
  • Patent number: 10310321
    Abstract: In order to improve a characteristic of an optical element, an optical element (polarizing filter) including a substrate 1S having a wire-grid region 1A and a peripheral region 2A positioned on an outer periphery thereof is made to have the following configuration. A wire-grid in which a plurality of line-shaped wires P10 made of Al and extending in a y direction are arranged at spaces S in an x direction is provided in the wire-grid region 1A of the substrate 1S, and a pattern (repetitive pattern) in which a plurality of protruding portions P20 made of Al are arranged is provided in the peripheral region 2A. This pattern is, for example, a checkerboard pattern. According to the above-mentioned configuration, the plurality of wires P10 can be arranged so that their respective ends are spaced apart from an end of the substrate 1S, so that the wires P10 can be prevented from being deformed and nicked.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: June 4, 2019
    Assignee: MAXELL, LTD.
    Inventors: Koji Hirata, Hiroyuki Minemura, Yumiko Anzai, Tetsuya Nishida, Jiro Yamamoto, Naoyuki Kofuji, Hidehiro Ikeda, Nobuyuki Kimura
  • Patent number: 9933553
    Abstract: Provided are an optical element and an optical device using the optical element to which a manufacturing process for manufacturing a wire-grid structure can be basically applied, and besides, in which a higher polarization contrast ratio than that of a wire-grid element can be obtained. A wobbled wire element in an embodiment has a feature that a periodic structure having a period equal to or larger than a wavelength of an incident light wave is formed in a y direction. In this manner, in a wobbled wire element in a first embodiment, a polarization contrast ratio can be significantly improved.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: April 3, 2018
    Assignee: HITACHI MAXELL, LTD.
    Inventors: Koji Hirata, Hiroyuki Minemura, Yumiko Anzai, Tetsuya Nishida, Jiro Yamamoto, Naoyuki Kofuji, Hidehiro Ikeda, Nobuyuki Kimura
  • Publication number: 20150234230
    Abstract: In order to improve a characteristic of an optical element, an optical element (polarizing filter) including a substrate 1S having a wire-grid region 1A and a peripheral region 2A positioned on an outer periphery thereof is made to have the following configuration. A wire-grid in which a plurality of line-shaped wires P10 made of Al and extending in a y direction are arranged at spaces S in an x direction is provided in the wire-grid region 1A of the substrate 1S, and a pattern (repetitive pattern) in which a plurality of protruding portions P20 made of Al are arranged is provided in the peripheral region 2A. This pattern is, for example, a checkerboard pattern. According to the above-mentioned configuration, the plurality of wires P10 can be arranged so that their respective ends are spaced apart from an end of the substrate 1S, so that the wires P10 can be prevented from being deformed and nicked.
    Type: Application
    Filed: June 21, 2012
    Publication date: August 20, 2015
    Inventors: Koji Hirata, Hiroyuki Minemura, Yumiko Anzai, Tetsuya Nishida, Jiro Yamamoto, Naoyuki Kofuji, Hidehiro Ikeda, Nobuyuki Kimura
  • Publication number: 20150226896
    Abstract: Provided are an optical element and an optical device using the optical element to which a manufacturing process for manufacturing a wire-grid structure can be basically applied, and besides, in which a higher polarization contrast ratio than that of a wire-grid element can be obtained. A wobbled wire element in an embodiment has a feature that a periodic structure having a period equal to or larger than a wavelength of an incident light wave is formed in a y direction. In this manner, in a wobbled wire element in a first embodiment, a polarization contrast ratio can be significantly improved.
    Type: Application
    Filed: June 21, 2012
    Publication date: August 13, 2015
    Inventors: Koji Hirata, Hiroyuki Minemura, Yumiko Anzai, Tetsuya Nishida, Jiro Yamamoto, Naoyuki Kofuji, Hidehiro Ikeda, Nobuyuki Kimura
  • Patent number: 8704166
    Abstract: Provide is an ion trap mass spectrometer which is configured to gain an MS spectrum of only fragment data in an MS/MS analysis, thereby makes it possible to perform the analysis in a short period. For this purpose, the device is comprised of: an ionization unit configured to ionize a sample which has been separated into respective components; an ion trap unit configured to trap ions ionized by ionization unit in an electric field and eject the ions in accordance with the respective masses of the ions; a detection unit configured to detect the ions ejected from the ion trap unit; and a processing unit configured to generate an MS spectrum (mass spectrum) on the basis of data detected in the detection unit. The processing unit further configured to gain an MS spectrum of only fragment data of a target ion from a difference between an MS spectrum gained in an MS analysis made before and/or after an MS/MS analysis and an MS spectrum gained in the MS/MS analysis.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: April 22, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventor: Tetsuya Nishida
  • Publication number: 20130181124
    Abstract: Provide is an ion trap mass spectrometer which is configured to gain an MS spectrum of only fragment data in an MS/MS analysis, thereby makes it possible to perform the analysis in a short period. For this purpose, the device is comprised of: an ionization unit configured to ionize a sample which has been separated into respective components; an ion trap unit configured to trap ions ionized by ionization unit in an electric field and eject the ions in accordance with the respective masses of the ions; a detection unit configured to detect the ions ejected from the ion trap unit; and a processing unit configured to generate an MS spectrum (mass spectrum) on the basis of data detected in the detection unit. The processing unit further configured to gain an MS spectrum of only fragment data of a target ion from a difference between an MS spectrum gained in an MS analysis made before and/or after an MS/MS analysis and an MS spectrum gained in the MS/MS analysis.
    Type: Application
    Filed: July 25, 2011
    Publication date: July 18, 2013
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventor: Tetsuya Nishida
  • Patent number: 7995082
    Abstract: A recording medium including a plurality of recording layers, including: an optional first recording layer on which a light spot at a diffraction limit is formed; and a second recording layer on which a mark string pattern is formed, said second recording layer being different from said first recording layer, wherein when said mark string pattern is formed on a light receiving plane, while information of said first recording layer is reproduced, assuming that an optical distance between said first and second recording layers is dm, an optical distance d between optional two recording layers among a plurality of said recording layers is different from said dm.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: August 9, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Hisataka Sugiyama, Takeshi Maeda, Kiyoshi Matsumoto, Motoyasu Terao, Shigenori Okamine, Tetsuya Nishida, Harukazu Miyamoto
  • Patent number: 7989764
    Abstract: According to an aspect of the present invention, there are provided an ion trap mass spectrometry method and an ion trap mass spectrometry device using a mass spectrometer, the mass spectrometer including: an ion source part for ionizing a sample; an ion trap part for trapping ions generated in the ion source; a main high frequency power source for applying a main high frequency voltage to the ion trap part, and an auxiliary high frequency power source for applying an auxiliary high frequency voltage thereto; and a detector for detecting the ions ejected from the ion trap. The ion trap mass spectrometry method and the ion trap mass spectrometry device includes the steps of: accumulating desired ions into the ion trap part by ejecting undesired ions while accumulating ions into the ion trap part; and ejecting undesired ions that remain in the ion trap part and leaving the desired ions in the ion trap part are repeated alternately.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: August 2, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroyuki Yasuda, Shinji Nagai, Tetsuya Nishida
  • Patent number: 7934928
    Abstract: An implanter is provided, which enables rebuilding of an interdental papilla with a simple method. An implanter 1 is made up of a T-shaped steel member as a main body. The lateral side portions centering a web portion 2 in a flange portion 3 are inclined so as to be closer to the web portion 2 with respect to a plane perpendicular to the web portion 2, to provide an angular shape, with its peak residing in a portion joining with the web portion. A plurality of holes 4 large enough for gingival fibers to thrust in are opened in the flange portion 3. One or more embedding portions 5 are projected from a tip end portion (lower end portion) of the web portion 2. Each of the embedding portions 5 has a tip end portion with at least an acute shape, or a shape that enables embedding by being driven into alveolar bone 10.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: May 3, 2011
    Assignee: Nihon University
    Inventor: Tetsuya Nishida
  • Patent number: 7911910
    Abstract: Recording information is disclosed in which an information recording medium is irradiated with a recording energy beam that is power-modulated into at least a record power level and a record-ready power level lower than the record power level. The information is recorded on the recording medium in the form of length and interval of a mark portion. When forming a mark portion of a predetermined length, the radiation energy of the energy beam is increased as compared with when forming a mark portion of a different length before or after the first pulse of an energy beam pulse train including at least a pulse for forming the mark portion.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: March 22, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Miyamoto, Tsuyoshi Toda, Masatoshi Ohtake, Motoyasu Terao, Junko Ushiyama, Keikichi Andoo, Yumiko Anzai, Akemi Hirotsune, Tetsuya Nishida, Hideki Saga
  • Patent number: 7907491
    Abstract: Recording information is disclosed in which an information recording medium is irradiated with a recording energy beam that is power-modulated into at least a record power level and a record-ready power level lower than the record power level. The information is recorded on the recording medium in the form of length and interval of a mark portion. When forming a mark portion of a predetermined length, the radiation energy of the energy beam is increased as compared with when forming a mark portion of a different length before or after the first pulse of an energy beam pulse train including at least a pulse for forming the mark portion.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: March 15, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Miyamoto, Tsuyoshi Toda, Masatoshi Ohtake, Motoyasu Terao, Junko Ushiyama, Keikichi Andoo, Yumiko Anzai, Akemi Hirotsune, Tetsuya Nishida, Hideki Saga
  • Patent number: 7907490
    Abstract: Recording information is disclosed in which an information recording medium is irradiated with a recording energy beam that is power-modulated into at least a record power level and a record-ready power level lower than the record power level. The information is recorded on the recording medium in the form of length and interval of a mark portion. When forming a mark portion of a predetermined length, the radiation energy of the energy beam is increased as compared with when forming a mark portion of a different length before or after the first pulse of an energy beam pulse train including at least a pulse for forming the mark portion.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: March 15, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Miyamoto, Tsuyoshi Toda, Masatoshi Ohtake, Motoyasu Terao, Junko Ushiyama, Keikichi Andoo, Yumiko Anzai, Akemi Hirotsune, Tetsuya Nishida, Hideki Saga
  • Patent number: 7852727
    Abstract: Recording information is disclosed in which an information recording medium is irradiated with a recording energy beam that is power-modulated into at least a record power level and a record-ready power level lower than the record power level. The information is recorded on the recording medium in the form of length and interval of a mark portion. When forming a mark portion of a predetermined length, the radiation energy of the energy beam is increased as compared with when forming a mark portion of a different length before or after the first pulse of an energy beam pulse train including at least a pulse for forming the mark portion.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: December 14, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Miyamoto, Tsuyoshi Toda, Masatoshi Ohtake, Motoyasu Terao, Junko Ushiyama, Keikichi Andoo, Yumiko Anzai, Akemi Hirotsune, Tetsuya Nishida, Hideki Saga
  • Patent number: 7684301
    Abstract: Recording information is disclosed in which an information recording medium is irradiated with a recording energy beam that is power-modulated into at least a record power level and a record-ready power level lower than the record power level. The information is recorded on the recording medium in the form of length and interval of a mark portion. When forming a mark portion of a predetermined length, the radiation energy of the energy beam is increased as compared with when forming a mark portion of a different length before or after the first pulse of an energy beam pulse train including at least a pulse for forming the mark portion.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: March 23, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Miyamoto, Tsuyoshi Toda, Masatoshi Ohtake, Motoyasu Terao, Junko Ushiyama, Keikichi Andoo, Yumiko Anzai, Akemi Hirotsune, Tetsuya Nishida, Hideki Saga
  • Publication number: 20090179148
    Abstract: Performing an MS3 with a tandem mass spectrometer causes problems of increase in size of the device and of increase in cost. Likewise, a plural number of times MS/MS analyses are even more difficult. An electrode to create a harmonic potential is disposed in a collision cell, and fragment ions produced by the first-time collision induced dissociation are accumulated in the harmonic potential. Target ions of the subsequent stage are let out, by means of an axial resonance excitation, selectively from the accumulated ions. The ions are excited in the axial direction to have a potential exceeding the harmonic potential. Thereby, the second-time collision induced dissociation is performed by means of a potential difference provided at the subsequent stage. In addition, an operation to return the ions back to the harmonic potential enables a plural number of times MS/MS analyses to be performed.
    Type: Application
    Filed: January 8, 2009
    Publication date: July 16, 2009
    Inventors: Hiroyuki Yasuda, Yasushi Terui, Shinji Nagai, Tetsuya Nishida