Patents by Inventor Tetsuya Sakuma

Tetsuya Sakuma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210113958
    Abstract: An air conditioner includes: a moisture absorption unit that brings a liquid hygroscopic material, which contains a hygroscopic substance, and air into contact with each other and thereby causes the liquid hygroscopic material to absorb some moisture contained in the air; an atomizing and regenerating unit that atomizes some moisture contained in the liquid hygroscopic material supplied from the moisture absorption unit, generates atomized droplets, and removes the atomized droplets from the liquid hygroscopic material to thereby regenerate the liquid hygroscopic material and supply the regenerated liquid hygroscopic material to the moisture absorption unit; a circulation flow path through which air containing the atomized droplets is discharged from the atomizing and regenerating unit and the air is returned to the atomizing and regenerating unit; and an atomized droplet collecting unit that is provided in the circulation flow path and that collects the atomized droplets from the air.
    Type: Application
    Filed: March 26, 2019
    Publication date: April 22, 2021
    Applicants: SHARP KABUSHIKI KAISHA, SHARP KABUSHIKI KAISHA
    Inventors: JUN SAKUMA, TSUYOSHI KAMADA, SHO OCHI, TETSUYA IDE
  • Patent number: 10934913
    Abstract: The disclosure aims to attain further early activation of a catalytic substance in a catalytic device arranged in an exhaust passage of an internal combustion engine. A catalytic substance and a microwave absorber are included in a catalytic layer of the catalytic device which is irradiated with a microwave in the exhaust passage. Then, in the catalytic layer, the catalytic substance is carried or supported by the microwave absorber without through other substances.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: March 2, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Tetsuya Sakuma
  • Patent number: 10920634
    Abstract: An exhaust after treatment system provided in an exhaust passage of an internal combustion engine, comprising an adsorption layer having the function of adsorbing hydrocarbons in the exhaust, a catalyst layer arranged at the same position as the adsorption layer in the direction of flow of exhaust or at the downstream side from the adsorption layer and having an oxidation function of oxidizing the hydrocarbons, and a thermal energy generator generating thermal energy, in the thermal energy generated by the thermal energy generator, the thermal energy supplied to the catalyst layer being made larger than the thermal energy supplied to the adsorption layer.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: February 16, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Tetsuya Sakuma
  • Patent number: 10907523
    Abstract: An abnormality diagnosis apparatus includes an irradiation device to detect a resonance frequency by irradiating an electromagnetic wave to the NOx catalyst, and a controller to diagnose based on the resonance frequency whether the NOx catalyst is abnormal, wherein the NOx catalyst is arranged in such a position that an electric field strength inside the NOx catalyst at the time when the irradiation device irradiates the electromagnetic wave of the resonance frequency becomes larger in an upstream portion of the NOx catalyst, which is at the upstream side of a center of the NOx catalyst in the direction of flow of exhaust gas, than in a downstream portion of the NOx catalyst, which is at the downstream side of the center of the NOx catalyst.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: February 2, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tetsuya Sakuma, Keishi Takada, Hiromasa Nishioka
  • Patent number: 10900403
    Abstract: The NOx catalyst is irradiated with an electromagnetic wave, a resonance frequency and a ratio of a reception power to an oscillation power at the time of the irradiation are detected, and an upper limit value of a change amount of the resonance frequency or an upper limit value of a change amount of the ratio at which the NOx catalyst is diagnosed to be abnormal is determined from a change amount of the resonance frequency and a change amount of the ratio until water is adsorbed on all acid sites included in the NOx catalyst, and a change amount of the resonance frequency and a change amount of the ratio until ammonia is adsorbed on all acid sites included in the NOx catalyst, when it is supposed that the NOx catalyst is in a state of being on the borderline between normal and abnormal.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: January 26, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tetsuya Sakuma, Keishi Takada, Hiromasa Nishioka
  • Patent number: 10892163
    Abstract: The method of manufacturing a semiconductor device includes: forming a conductive film including a first metal-containing film and an anti-reflection film including a second metal-containing film which is laminated on the first metal-containing film, the second metal-containing film being different from the first metal-containing film and laminated on the first metal-containing film; patterning the conductive film; forming side wall protection films on side surfaces of the patterned conductive film; etching the anti-reflection film in the patterned conductive film, after formation of the side wall protection films; forming a passivation film on the first metal-containing film and the side wall protection films; and forming, in the passivation film, an opening portion in which a part of a top surface of the first metal-containing film is exposed.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: January 12, 2021
    Assignee: ABLIC INC.
    Inventor: Tetsuya Sakuma
  • Patent number: 10794250
    Abstract: An electrochemical reactor 70 is provided with a proton conductive solid electrolyte layer 75; an anode layer 76 arranged on the surface of the solid electrolyte layer and able to hold water molecules; a cathode layer 77 arranged on the surface of the solid electrolyte layer; and a current control device 73 controlling a current flowing through the anode layer and the cathode layer. The current control device reduces the current flowing through the anode layer and the cathode layer, when the water molecules held in the anode layer become smaller in amount.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: October 6, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tetsuya Sakuma, Keishi Takada, Hiromasa Nishioka
  • Patent number: 10731531
    Abstract: An internal combustion engine 1 is provided, in an exhaust passage thereof with an electrochemical reactor including: an ion conductive solid electrolyte layer; an anode layer arranged on a surface of the solid electrolyte layer; and a cathode layer arranged on a surface of the solid electrolyte layer and able to hold NOX. The engine includes a current control device for controlling the current supplied to the electrochemical reactor so as to flow from the anode layer through the solid electrolyte layer to the cathode layer. The current control device is configured so as to supply current to the electrochemical reactor at least temporarily while that internal combustion engine is stopped.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: August 4, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keishi Takada, Tetsuya Sakuma, Hiromasa Nishioka, Hiroshi Otsuki, Hirohito Hirata, Yoshiyuki Sakamoto, Tsuyoshi Hamaguchi, Chika Kato, Yuji Sakakibara, Takashi Kuzuya
  • Publication number: 20200232108
    Abstract: An electrochemical reactor includes a plurality of plate-shaped members and a plurality of passages defined by the plurality of plate-shaped members. Each plate-shaped member includes a cell including an ion conducting solid electrolyte layer, an anode layer arranged on a surface of the solid electrolyte layer, and a cathode layer arranged on a surface of the solid electrolyte layer at an opposite side to the surface at which the anode layer is arranged. The plate-shaped members are configured so that, for all of the passages, both of an anode layer of at least one plate-shaped member among the plurality of plate-shaped members defining the passages and a cathode layer of at least one other plate-shaped member among the plurality of plate-shaped members defining the passages face the passages.
    Type: Application
    Filed: January 22, 2020
    Publication date: July 23, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tetsuya SAKUMA, Keishi TAKADA, Yasumasa NOTAKE
  • Publication number: 20200224569
    Abstract: An exhaust purification system includes an electrochemical reactor provided in an engine exhaust passage; a bypass passage bypassing the electrochemical reactor; a flow control valve controlling an amount of exhaust gas, discharged from an engine body, flowing into the electrochemical reactor and the bypass passage; and a control device controlling the flow control valve. The electrochemical reactor includes a holding material holding NOX or HC and is configured so as to purify NOX or HC held at the holding material if encrgized. The control device controls the flow control valve so as to control the amount of exhaust gas flowing into the electrochemical reactor so that a temperature of the electrochemical reactor is maintained at less than a desorption start temperature where NOX or HC starts to be desorbed from the holding material.
    Type: Application
    Filed: January 14, 2020
    Publication date: July 16, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasumasa NOTAKE, Keishi TAKADA, Tetsuya SAKUMA
  • Publication number: 20200215482
    Abstract: An exhaust purification system of an internal combustion engine is provided with an electrochemical reactor provided in an exhaust passage of the internal combustion engine, and a voltage control device controlling a voltage supplied to the electrochemical reactor. The electrochemical reactor is provided with an ion conducting solid electrolyte layer and an anode layer and cathode layer placed on the surface of the solid electrolyte layer. The voltage control device is configured to perform short-circuit detection control detecting short-circuiting between the anode layer and the cathode layer, and energizing control applying current between the anode layer and the cathode layer so to energize the short-circuited part when short-circuiting is detected.
    Type: Application
    Filed: January 7, 2020
    Publication date: July 9, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tetsuya SAKUMA, Keishi TAKADA, Yasumasa NOTAKE
  • Publication number: 20200215481
    Abstract: An electrochemical reactor is arranged inside an exhaust passage of an internal combustion engine and is provided with a plurality of groups of cells. Each group of cell has a plurality of cells, each cell has an ion conducting solid electrolyte layer, and an anode layer and cathode layer arranged on a surface of the solid electrolyte layer. Each group of cells is configured so that all of the exhaust gas flows into passages defined by cells configuring the group of cells and so that both of the anode layers and the cathode layers are exposed to each passage. The plurality of groups of cells are arranged aligned in a direction of flow of exhaust gas and different groups of cells are connected to a power source in parallel with each other.
    Type: Application
    Filed: December 31, 2019
    Publication date: July 9, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keishi TAKADA, Tetsuya SAKUMA, Yasumasa NOTAKE
  • Publication number: 20200141296
    Abstract: The disclosure aims to attain further early activation of a catalytic substance in a catalytic device arranged in an exhaust passage of an internal combustion engine. A catalytic substance and a microwave absorber are included in a catalytic layer of the catalytic device which is irradiated with a microwave in the exhaust passage. Then, in the catalytic layer, the catalytic substance is carried or supported by the microwave absorber without through other substances.
    Type: Application
    Filed: October 30, 2019
    Publication date: May 7, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Tetsuya SAKUMA
  • Patent number: 10641150
    Abstract: An exhaust treatment catalyst (5) is arranged in the engine exhaust passage, and hydrogen generated in the reformer (6) is supplied through the hydrogen supply pipe (13) to the inside of the engine exhaust passage upstream of the exhaust treatment catalyst (5). Heat exchange fins (15) for heat exchange with exhaust gas flowing through the inside of the engine exhaust passage are formed on the outer circumferential surface of the hydrogen supply pipe (13) inserted inside the engine exhaust passage.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: May 5, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasumasa Notake, Hiromasa Nishioka, Keishi Takada, Tetsuya Sakuma, Kiyoshi Fujihara
  • Publication number: 20200131960
    Abstract: The present disclosure is intended to improve HC purification performance of a catalytic device arranged in an exhaust passage of an internal combustion engine in a more suitable manner. A microwave absorber is distributed over a predetermined part in a catalytic layer of the catalytic device which is irradiated with a microwave in the exhaust passage of the internal combustion engine. Then, in the predetermined part in the catalytic layer, a content ratio of a first catalytic material, which is one of two kinds of catalytic materials of which HC purification performance is higher than that of the other, is higher than a content ratio of the first catalytic material in the other portion than the predetermined part in the catalytic layer.
    Type: Application
    Filed: October 7, 2019
    Publication date: April 30, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Tetsuya SAKUMA
  • Publication number: 20200080453
    Abstract: An exhaust after treatment system provided in an exhaust passage of an internal combustion engine, comprising an adsorption layer having the function of adsorbing hydrocarbons in the exhaust, a catalyst layer arranged at the same position as the adsorption layer in the direction of flow of exhaust or at the downstream side from the adsorption layer and having an oxidation function of oxidizing the hydrocarbons, and a thermal energy generator generating thermal energy, in the thermal energy generated by the thermal energy generator, the thermal energy supplied to the catalyst layer being made larger than the thermal energy supplied to the adsorption layer.
    Type: Application
    Filed: August 1, 2019
    Publication date: March 12, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Tetsuya SAKUMA
  • Patent number: 10502106
    Abstract: An electrochemical reactor arranged in an exhaust passage of an internal combustion engine has a honeycomb member wherein a plurality of cells are formed. The honeycomb comprising an upstream and a downstream side partial honeycombs. The upstream side has a plurality of first and second cells arranged to at least partially adjoin the first cells through partition wall base members including an ion conductive solid electrolyte. The downstream side has a plurality of third and fourth cells arranged to at least partially adjoin the third cells through partition wall base members including an ion conductive solid electrolyte. The first and fourth cells have cathode layers, and second and third cells have anode layers. The electrochemical reactor is configured so all of the exhaust gas flowing through the first cells flows into the third cells and all of the exhaust gas flowing through the second cells flows into the fourth cells.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: December 10, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tetsuya Sakuma, Keishi Takada
  • Publication number: 20190368398
    Abstract: An electrochemical reactor arranged in an exhaust passage of an internal combustion engine has a honeycomb member wherein a plurality of cells are formed. The honeycomb comprising an upstream and a downstream side partial honeycombs. The upstream side has a plurality of first and second cells arranged to at least partially adjoin the first cells through partition wall base members including an ion conductive solid electrolyte. The downstream side has a plurality of third and fourth cells arranged to at least partially adjoin the third cells through partition wall base members including an ion conductive solid electrolyte. The first and fourth cells have cathode layers, and second and third cells have anode layers. The electrochemical reactor is configured so all of the exhaust gas flowing through the first cells flows into the third cells and all of the exhaust gas flowing through the second cells flows into the fourth cells.
    Type: Application
    Filed: May 15, 2019
    Publication date: December 5, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tetsuya SAKUMA, Keishi TAKADA
  • Publication number: 20190345860
    Abstract: An internal combustion engine 1 is provided, in an exhaust passage thereof with an electrochemical reactor including: an ion conductive solid electrolyte layer; an anode layer arranged on a surface of the solid electrolyte layer; and a cathode layer arranged on a surface of the solid electrolyte layer and able to hold NOX. The engine includes a current control device for controlling the current supplied to the electrochemical reactor so as to flow from the anode layer through the solid electrolyte layer to the cathode layer. The current control device is configured so as to supply current to the electrochemical reactor at least temporarily while that internal combustion engine is stopped.
    Type: Application
    Filed: April 30, 2019
    Publication date: November 14, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keishi TAKADA, Tetsuya SAKUMA, Hiromasa NISHIOKA, Hiroshi OTSUKI, Hirohito HIRATA, Yoshiyuki SAKAMOTO, Tsuyoshi HAMAGUCHI, Chika KATO, Yuji SAKAKIBARA, Takashi KUZUYA
  • Patent number: 10450925
    Abstract: In cases where an adsorption amount of ammonia in the SCR catalyst is smaller than a predetermined target adsorption amount, when a condition of NOX being assumed not to flow into the SCR catalyst is satisfied, and when the temperature of the SCR catalyst falls within a temperature range (effective range) which is equal to or higher than a desorption temperature of ammonia adsorbed to the weak adsorption sites and which is less than a desorption temperature of ammonia adsorbed to the active sites, the adsorption of ammonia to the active sites is carried out, while suppressing the adsorption of ammonia to the weak adsorption sites, by supplying the additive agent to the SCR catalyst from a supply device.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: October 22, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Tetsuya Sakuma