Patents by Inventor Tetsuya Shoji

Tetsuya Shoji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160074936
    Abstract: A method for producing a raw material powder of a permanent magnet, includes: preparing a material powder of a permanent magnet, measuring magnetic characteristics of the material powder, and judging the quality of the material powder as the raw material powder based on a preliminarily determined relation between magnetic characteristics and the structure of the material powder. A method for producing a permanent magnet includes integrating material powders judged as good in the step of judging the quality as raw material powders by the method for producing a raw material powder of a permanent magnet. A method for inspecting a permanent magnet material powder includes transmitting a magnetic field to a material powder of a permanent magnet, receiving the magnetic field from the material powder, and measuring a magnetic field difference between the transmitted magnetic field and the received magnetic field as magnetic characteristics of the material powder.
    Type: Application
    Filed: May 24, 2013
    Publication date: March 17, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noritsugu SAKUMA, Hidefumi KISHIMOTO, Mikiya NOZAKI, Masao YANO, Tetsuya SHOJI, Akira MANABE
  • Patent number: 9257227
    Abstract: Provided is a manufacturing method of a rare-earth magnet with high coercive force, including a first step of pressing-forming powder as a rare-earth magnet material to form a compact S, the powder including a RE-Fe—B main phase MP (RE: at least one type of Nd and Pr) and a RE-X alloy (X: metal element) grain boundary phase surrounding the main phase; and second step of bringing a modifier alloy M into contact with the compact S or a rare-earth magnet precursor C obtained by hot deformation processing of the compact S, followed by heat treatment to penetrant diffuse melt of the modifier alloy M into the compact S or the rare-earth magnet precursor C to manufacture the rare-earth magnet RM, the modifier alloy including a RE-Y (Y: metal element and not including a heavy rare-earth element) alloy having a eutectic or a RE-rich hyper-eutectic composition.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: February 9, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazuaki Haga, Noritaka Miyamoto, Tetsuya Shoji, Noritsugu Sakuma, Shinya Omura, Motoki Hiraoka
  • Patent number: 9230733
    Abstract: Provided is a manufacturing method of a rare-earth magnet with high coercive force, including a first step of pressing-forming powder as a rare-earth magnet material to form a compact S, the powder including a RE-Fe—B main phase MP (RE: at least one type of Nd and Pr) and a RE-X alloy (X: metal element) grain boundary phase surrounding the main phase; and second step of bringing a modifier alloy M into contact with the compact S or a rare-earth magnet precursor C obtained by hot deformation processing of the compact S, followed by heat treatment to penetrant diffuse melt of the modifier alloy M into the compact S or the rare-earth magnet precursor C to manufacture the rare-earth magnet RM, the modifier alloy including a RE-Y (Y: metal element and not including a heavy rare-earth element) alloy having a eutectic or a RE-rich hyper-eutectic composition.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: January 5, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazuaki Haga, Noritaka Miyamoto, Tetsuya Shoji, Noritsugu Sakuma, Shinya Omura, Motoki Hiraoka
  • Publication number: 20150357100
    Abstract: A nanocomposite magnet includes grains including a shell of a Re-TM-B phase and a core of a TM or TM-B phase. Re is a rare earth element, and TM is a transition metal.
    Type: Application
    Filed: June 4, 2015
    Publication date: December 10, 2015
    Inventors: Masao YANO, Tetsuya SHOJI, Akira MANABE, Noritsugu SAKUMA, Masaaki ITO
  • Patent number: 9190196
    Abstract: A rare earth magnet of the invention has a composition represented by the compositional formula RaHbFecCodBeMf, where: R is at least one rare earth element including Y; H is at least one heavy rare earth element from among Dy and Tb; M is at least one element from among Ga, Zn, Si, Al, Nb, Zr, Ni, Cu, Cr, Hf, Mo, P, C, Mg, and V; 13?a?20; 0?b?4; c=100?a?b?d?e?f; 0?d?30; 4?e?20; 0?f?3, and has a structure constituted by a main phase: a (RH)2(FeCo)14B phase, and a grain boundary phase: a (RH)(FeCo)4B4 phase and a RH phase, with a crystal grain size of the main phase of 10 nm to 200 nm.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: November 17, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noritsugu Sakuma, Tetsuya Shoji, Masao Yano
  • Publication number: 20150287528
    Abstract: Provided is a method for manufacturing a rare-earth magnet enabling effective penetrant-diffusion of a melt of modifier alloy powder without generating oxidation reaction or hydroxylation reaction when the modifier alloy powder is used for a better coercive force as well.
    Type: Application
    Filed: November 13, 2013
    Publication date: October 8, 2015
    Inventors: Kazuaki Haga, Noritaka Miyamoto, Tetsuya Shoji, Daisuke Sakuma
  • Publication number: 20150287530
    Abstract: A method for manufacturing a rare-earth magnet, through hot deformation processing, having a high degree of orientation at the entire area thereof and high remanence, without increasing processing cost including a step of press-forming powder as a rare-earth magnetic material to form a compact S; and a step of performing hot deformation processing to the compact S, thus manufacturing the rare-earth magnet C. The hot deformation processing includes two steps of extruding and upsetting. The extruding is to place a compact S in a die Da, and apply pressure to the compact S? in a heated state with an extrusion punch PD so as to reduce the thickness for extrusion to prepare the rare-earth magnet intermediary body S? having a sheet form, and the upsetting is to apply pressure to the rare-earth magnet intermediary body S? in the thickness direction to reduce the thickness, thus manufacturing the rare-earth magnet C.
    Type: Application
    Filed: October 17, 2013
    Publication date: October 8, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daisuke ICHIGOZAKI, Noritaka MIYAMOTO, Tetsuya SHOJI, Yuya IKEDA, Akira MANABE
  • Publication number: 20150279559
    Abstract: Provided is a method for manufacturing a rare-earth magnet capable of manufacturing a rare-earth magnet with high degree of orientation by sufficient plastic deformation while suppressing cracks at the side faces of a compact that is plastic-deformed during the hot deformation processing. The method includes a step of preparing a compact S, preparing a plastic processing mold including a die D in which a cavity Ca is provided, and punches P that are slidable in the cavity Ca, the cavity Ca having a cross section that is larger in cross-sectional dimensions than a cross section of the compact S that is orthogonal to a pressing direction by the punches P; and a step of placing the compact S in the cavity Ca and performing hot deformation processing, thus manufacturing an orientational magnet C.
    Type: Application
    Filed: October 4, 2013
    Publication date: October 1, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noritaka Miyamoto, Daisuke Ichigozaki, Tetsuya Shoji, Eisuke Hoshina, Akira Kano, Osamu Yamashita
  • Publication number: 20150279529
    Abstract: A method for manufacturing a rare-earth magnet having excellent workability and coercive-force performance in a high-temperature atmosphere and magnetization performance by controlling the content of Pr as the alloy composition to an optimum range, including: press-forming magnetic powder B to form a compact, the magnetic powder B including a RE-Fe-B main phase MP (RE: Nd and Pr) and an RE-X alloy (X: metal element) grain boundary phase BP around the main phase MP having an average grain size of 10 nm to 200 nm; and performing hot deformation processing to the compact to give magnetic anisotropy thereto, thus manufacturing the rare-earth magnet C that is a nano-crystalline magnet. The content of Nd, B, Co and Pr included in the magnetic powder B is Nd: 25 to 35, B: 0.5 to 1.5 and Co: 2 to 7 in terms of at %, and Pr: 0.2 to 5 at % and Fe.
    Type: Application
    Filed: October 8, 2013
    Publication date: October 1, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daisuke Ichigozaki, Noritaka Miyamoto, Tetsuya Shoji, Noritsugu Sakuma, Yuya Ikeda
  • Publication number: 20150235747
    Abstract: A rare-earth sintered magnet including a relatively large main phase, and method for manufacturing same. The rare-earth sintered magnet having excellent coercive-force performance that can be manufactured without using heavy rare-earth elements such as Dy, and including: a RE-T-B main phase C (RE: Nd or Pr, T: Fe or Fe and a part thereof substituted with Co), and a grain boundary phase B surrounding the main phase C, the grain boundary phase including the RE element and the T element. The T element at the grain boundary phase B has density of 60 at % or less, and the grain boundary B has a thickness decreasing from a surface S of the rare-earth sintered magnet M to an inside thereof, and the grain boundary phase B at an area SA of a surface layer of the rare-earth sintered magnet M has an average thickness of 10 nm or more.
    Type: Application
    Filed: October 2, 2013
    Publication date: August 20, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noritaka Miyamoto, Tetsuya Shoji, Kazuaki Haga
  • Patent number: 9111679
    Abstract: A method of producing an R-T-B rare earth magnet that include forming an R-T-B (R: rare-earth element, T: Fe, or Fe and partially Co that substitutes for part of Fe) rare earth alloy powder into a compact and performing hot working on the compact, wherein the hot working is performed in a direction that is different from the direction in which the forming was performed.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: August 18, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Noritaka Miyamoto, Akira Manabe, Tetsuya Shoji, Daisuke Ichigozaki
  • Publication number: 20150228386
    Abstract: The present invention is a method capable of producing a rare-earth magnet with excellent magnetization and coercivity. The method includes producing a sintered body including a main phase and grain boundary phase and represented by (R11-xR2x)aTMbBcMd (where R1 represents one or more rare-earth elements including Y, R2 represents a rare-earth element different than R1, TM represents transition metal including at least one of Fe, Ni, or Co, B represents boron, M represents at least one of Ti, Ga, Zn, Si, Al, etc., 0.01?x?1, 12?a?20, b=100?a?c?d, 5?c?20, and 0?d?3 (all at %)); applying hot deformation processing to the sintered body to produce a precursor of the magnet; and diffusing/infiltrating melt of a R3-M modifying alloy (rare-earth element where R3 includes R1 and R2) into the grain boundary phase of the precursor.
    Type: Application
    Filed: January 30, 2015
    Publication date: August 13, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noritsugu SAKUMA, Tetsuya SHOJI, Kazuaki HAGA
  • Patent number: 9070508
    Abstract: A method of producing an R-T-B rare earth magnet that include forming an R-T-B (R: rare-earth element, T: Fe, or Fe and partially Co that substitutes for part of Fe) rare earth alloy powder into a compact and performing hot working on the compact, wherein the hot working is performed in a direction that is different from the direction in which the forming was performed.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: June 30, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Noritaka Miyamoto, Akira Manabe, Tetsuya Shoji, Daisuke Ichigozaki
  • Publication number: 20140308441
    Abstract: A method of manufacturing rare-earth magnets includes, a first step of producing a compact C by subjecting a sintered body S, which is formed of a RE—Fe—B main phase MP having a nanocrystalline structure (where RE is at least one of neodymium and praseodymium) and a grain boundary phase BP of an RE—X alloy (where X is a metal element) located around the main phase, to hot plastic processing that imparts anisotropy; and a second step of producing a rare-earth magnet RM by melting a RE—Y—Z alloy which increases the coercive force of the compact C (where Y is a transition metal element, and Z is a heavy rare-earth element), together with the grain boundary phase BP, and liquid-phase infiltrating the RE—Y—Z alloy melt from a surface of the compact C.
    Type: Application
    Filed: November 7, 2012
    Publication date: October 16, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tetsuya Shoji, Shinya Omura, Motoki Hiraoka
  • Patent number: 8846136
    Abstract: PROBLEM: To provide a production method of an anisotropic rare earth magnet capable of being enhanced in coercivity without adding a large amount of a rare metal such as Dy and Tb. MEANS FOR RESOLUTION: A production method of a rare earth magnet, comprising a step of bringing a compact obtained by applying hot working to impart anisotropy to a sintered body having a rare earth magnet composition into contact with a low-melting-point alloy melt containing a rare earth element.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: September 30, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tetsuya Shoji, Noritaka Miyamoto, Shinya Omura, Daisuke Ichigozaki, Takeshi Yamamoto
  • Publication number: 20140260800
    Abstract: A method for producing magnetic powder for forming a sintered body that is a precursor of a rare-earth magnet. Provided is a method for producing magnetic powder for forming a sintered body that is a precursor of a rare-earth magnet, which can produce magnetic powder with a structure containing optimal nanosized crystal grains by accurately and efficiently sorting out magnetic powder containing no coarse grains in the structure thereof.
    Type: Application
    Filed: October 9, 2012
    Publication date: September 18, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noritsugu Sakuma, Hidefumi Kishimoto, Noritaka Miyamoto, Akira Kato, Akira Manabe, Daisuke Ichigozaki, Tetsuya Shoji, Shoichi Harakawa
  • Publication number: 20140242267
    Abstract: Provided is a rare-earth magnet containing no heavy rare-earth metals such as Dy or Tb in a grain boundary phase, has a modifying alloy for increasing coercivity (in particular, coercivity under a high-temperature atmosphere) infiltrated thereinto at lower temperature than in the conventional rare-earth magnets, has high coercivity, and has relatively high magnetizability, and a production method therefor. The rare-earth magnet RM includes a RE-Fe—B-based main phase MP with a nanocrystalline structure (where RE is at least one of Nd or Pr) and a grain boundary phase BP around the main phase, the grain boundary phase containing a RE-X alloy (where X is a metallic element other than heavy rare-earth elements). Crystal grains of the main phase MP are oriented along the anisotropy axis, and each crystal grain of the main phase, when viewed from a direction perpendicular to the anisotropy axis, has a plane that is quadrilateral in shape or has a close shape thereto.
    Type: Application
    Filed: November 12, 2012
    Publication date: August 28, 2014
    Inventors: Tetsuya Shoji, Akira Manabe, Noritaka Miyamoto, Motoki Hiraoka, Shinya Omura, Daisuke Ichigozaki, Shinya Nagashima
  • Patent number: 8636853
    Abstract: An Mg alloy provided with high strength and high ductility by matching the strength and ductility in tensile deformation and compressive deformation at the same levels is provided. The Mg alloy of the present invention is characterized by having a chemical composition consisting of Y: 0.1 to 1.5 at % and a balance of Mg and unavoidable impurities and having a microstructure with high Y regions with Y concentrations higher than an average Y concentration distributed at nanometer order sizes and intervals. The present invention further provides an Mg alloy characterized by having a chemical composition consisting of Y: more than 0.1 at % and a valance of Mg and unavoidable impurities, having a microstructure with high Y regions with Y concentrations higher than an average Y concentration distributed at nanometer order sizes and intervals and having an average recrystallized grain size within the range satisfying the following formula 1: ?0.87c+1.10<log d<1.14c+1.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: January 28, 2014
    Assignees: Toyota Jidosha Kabushiki Kaisha, National Institute for Materials Science
    Inventors: Tetsuya Shoji, Akira Kato, Toshiji Mukai, Hidetoshi Somekawa
  • Publication number: 20130323111
    Abstract: The present invention provides a method of production of a rare earth magnet which achieves high magnetization by hot working and at the same time secures high coercivity. A method of production of the present invention is a method for producing an R-T-B-based rare earth magnet comprising: molding a powder of an R-T-B-based rare earth alloy (R: rare earth element, T: Fe or Fe part of which is substituted by Co) to form a bulk; then hot working the bulk; and before the molding, mixing with the powder of an R-T-B-based rare earth alloy either a metal which forms a liquid phase in copresence with R at a temperature lower than the hot working temperature, or an alloy which forms a liquid phase at a temperature lower than the hot working temperature.
    Type: Application
    Filed: February 21, 2011
    Publication date: December 5, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noritaka Miyamoto, Tetsuya Shoji, Shinya Omura, Daisuke Ichigozaki, Akira Manabe
  • Publication number: 20130321112
    Abstract: A method of producing an R-T-B rare earth magnet that include forming an R-T-B (R: rare-earth element, T: Fe, or Fe and partially Co that substitutes for part of Fe) rare earth alloy powder into a compact and performing hot working on the compact, wherein the hot working is performed in a direction that is different from the direction in which the forming was performed.
    Type: Application
    Filed: February 22, 2012
    Publication date: December 5, 2013
    Inventors: Noritaka Miyamoto, Akira Manabe, Tetsuya Shoji, Daisuke Ichigozaki