Patents by Inventor Tetsuya Shoji

Tetsuya Shoji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130248754
    Abstract: The method of the present invention produces a rare earth magnet, which is represented by a neodymium magnet (Nd2Fe14B) and neodymium magnet films with applications in micro-systems, by using a heat treatment method capable of enhancing the magnetic characteristics, particularly the magnetic coercive force. A method for producing a rare earth magnet, comprising: (a) quenching a molten metal having a rare earth magnet composition to form quenched flakes of nanocrystalline structure; sintering the quenched flakes; subjecting the sintered body obtained to an orientation treatment; and applying a heat treatment with pressurization at a temperature sufficiently high to enable diffusion or fluidization of a grain boundary phase and at the same time, low enough to prevent coarsening of the crystal grains.
    Type: Application
    Filed: May 13, 2011
    Publication date: September 26, 2013
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, UNIVERSITY OF SHEFFIELD, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Noritsugu Sakuma, Hidefumi Kishimoto, Akira Kato, Tetsuya Shoji, Dominique Givord, Nora Dempsey, Thomas George Woodcock, Oliver Gutfleisch, Gino Hrkac, Thomas Schrefl
  • Publication number: 20130195710
    Abstract: Provided is a manufacturing method of a rare-earth magnet capable of penetrant-diffusing a modifier alloy to increase a coercive force (especially a coercive force under a high-temperature atmosphere) at a temperature lower than the conventional method for manufacturing a rare-earth magnet without using heavy rare-earth metals such as Dy and Tb, and accordingly capable of manufacturing a high coercivity rare-earth magnet at the lowest cost possible.
    Type: Application
    Filed: January 25, 2013
    Publication date: August 1, 2013
    Inventors: Kazuaki HAGA, Noritaka MIYAMOTO, Tetsuya SHOJI, Noritsugu SAKUMA, Shinya OMURA, Motoki HIRAOKA
  • Publication number: 20130092867
    Abstract: A method for producing a sintered rare-earth magnet characterized by sintering a raw material that includes a ribbon-shaped polycrystalline phase with an average grain size of 10 to 200 nm fabricated by rapid solidification of an alloy melt having a rare-earth magnet composition, and a low-melting point phase formed on the surface of the polycrystalline phase and having a melting point lower than the polycrystalline phase.
    Type: Application
    Filed: November 18, 2010
    Publication date: April 18, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tetsuya Shoji, Noritsugu Sakuma, Hidefumi Kishimoto
  • Publication number: 20130078369
    Abstract: PROBLEM: To provide a production method of an anisotropic rare earth magnet capable of being enhanced in coercivity without adding a large amount of a rare metal such as Dy and Tb. MEANS FOR RESOLUTION: A production method of a rare earth magnet, comprising a step of bringing a compact obtained by applying hot working to impart anisotropy to a sintered body having a rare earth magnet composition into contact with a low-melting-point alloy melt containing a rare earth element.
    Type: Application
    Filed: September 13, 2011
    Publication date: March 28, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tetsuya Shoji, Noritaka Miyamoto, Shinya Omura, Daisuke Ichigozaki, Takeshi Yamamoto
  • Publication number: 20120312422
    Abstract: A molten alloy that has a nanocomposite magnet composition is quenched and solidified to fabricate a foil that has a polycrystalline phase composed of a hard magnetic phase with an average crystal grain diameter of 10 to 200 nm and a soft magnetic phase with an average crystal grain diameter of 1 to 100 nm. The foil that includes a low melting point phase that is formed on a surface of the foil and that has a melting point that is lower than that of the polycrystalline phase is sintered.
    Type: Application
    Filed: January 27, 2011
    Publication date: December 13, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masao Yano, Noritsugu Sakuma, Tetsuya Shoji
  • Publication number: 20120247624
    Abstract: A rare earth magnet of the invention has a composition represented by the compositional formula RaHbFecCodBeMf, where: R is at least one rare earth element including Y; H is at least one heavy rare earth element from among Dy and Tb; M is at least one element from among Ga, Zn, Si, Al, Nb, Zr, Ni, Cu, Cr, Hf, Mo, P, C, Mg, and V; 13?a?20; 0?b?4; c=100?a?b?d?e?f; 0?d?30; 4?e?20; 0?f?3, and has a structure constituted by a main phase: a (RH)2(FeCo)14B phase, and a grain boundary phase: a (RH)(FeCo)4B4 phase and a RH phase, with a crystal grain size of the main phase of 10 nm to 200 nm.
    Type: Application
    Filed: December 16, 2010
    Publication date: October 4, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noritsugu Sakuma, Tetsuya Shoji, Masao Yano
  • Patent number: 8236462
    Abstract: An electrode catalyst for a fuel cell, which has improved performance compared with conventional platinum alloy catalysts, a method for producing the electrode catalyst, and a polymer electrolyte fuel cell using the electrode catalyst are provided. The electrode catalyst for a fuel cell comprises a noble-metal-non-precious metal alloy that has a core-shell structure supported on a conductive carrier. The composition of the catalyst components of the shell is such that the amount of the noble metal is greater than or equal to the amount of the non-precious metal.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: August 7, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yukiyoshi Ueno, Tetsuo Nagami, Tetsuya Shoji
  • Publication number: 20110318215
    Abstract: A method for producing an NdFeBCu magnet includes supplying an alloy melt having a composition that is represented by the general formula NdyFe100-x-y-zBzCuX, where x is between 1 and 3 inclusive, y is larger than 12 and at most 24, and z is larger than 6 and at most 12, onto a cooled roll to obtain a quenched ribbon as a ribbon shaped magnetic material.
    Type: Application
    Filed: February 24, 2010
    Publication date: December 29, 2011
    Inventors: Hidefumi Kishimoto, Tetsuya Shoji, Noritsugu Sakuma
  • Publication number: 20110286878
    Abstract: An NdFeBGa magnet material has a composition that is represented by the genera formula NdyFe100-x-y-zBzGax, where x is between 1 and 3 inclusive, y is between 14 and 24 inclusive, and z is between 7 and 12 inclusive.
    Type: Application
    Filed: February 4, 2010
    Publication date: November 24, 2011
    Inventors: Hidefumi Kishimoto, Tetsuya Shoji, Noritsugu Sakuma
  • Patent number: 7976643
    Abstract: A nanocomposite magnet containing an Fe particle in the grain boundary of an Nd2Fe14B compound particle is produced by mixing a dispersion of the Nd2Fe14B compound particle in a solvent containing a surface-active agent and a dispersion of the Fe particle in a solvent containing a surface-active agent, and then supporting the Fe particle on the surface of the Nd2Fe14B compound particle by stirring the mixture of the dispersions while adding an amphiphilic solvent, and then performing the drying and the drying and the sintering.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: July 12, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Noritsugu Sakuma, Tetsuya Shoji
  • Publication number: 20110135532
    Abstract: The present invention has as its object to provide an Mg-based alloy cold worked member which can remarkably lower the load weight required for cold plastic working and enables practical usage of the same. The present invention is an Mg-based alloy cold worked member obtained by cold working an Mg-based alloy to form it into a predetermined shape, characterized by having a microstructure which includes crystal grains divided and made finer by cold working.
    Type: Application
    Filed: July 22, 2009
    Publication date: June 9, 2011
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Toshiji Mukai, Hidetoshi Somekawa, Tetsuya Shoji, Akira Kato
  • Publication number: 20110081595
    Abstract: An electrode catalyst for a fuel cell, which has improved performance compared with conventional platinum alloy catalysts, a method for producing the electrode catalyst, and a polymer electrolyte fuel cell using the electrode catalyst are provided. The electrode catalyst for a fuel cell comprises a noble-metal-non-precious metal alloy that has a core-shell structure supported on a conductive carrier. The composition of the catalyst components of the shell is such that the amount of the noble metal is greater than or equal to the amount of the non-precious metal.
    Type: Application
    Filed: January 26, 2009
    Publication date: April 7, 2011
    Inventors: Yukiyoshi Ueno, Tetsuo Nagami, Tetsuya Shoji
  • Publication number: 20100321139
    Abstract: A method of producing a permanent magnet includes: forming a multiplicity of solidified ribbons that are composed of nanosized crystal grains by melting a magnet material and rapidly cooling the molten product; binding the multiplicity of solidified ribbons together by compression molding and sintering to form a sintered body; and performing plastic forming on the sintered body to provide the sintered body with a distribution of strain which increases from a peripheral portion to a central portion.
    Type: Application
    Filed: June 16, 2010
    Publication date: December 23, 2010
    Inventors: Tetsuya Shoji, Hidefumi Kishimoto, Noritsugu Sakuma, Kenji Nakamura, Tomonari Kogure
  • Publication number: 20100215851
    Abstract: A method of producing core/shell composite nano-particles exhibiting superior characteristics, by using as cores nano-particles heat treated in advance so as to give them a specific crystal structure in a state using a barrier layer to prevent sintering and forming shells on their surface, which eliminates hindrances to the shell forming reaction due to the phase transfer catalyst or other strongly sticky dispersant, is provided.
    Type: Application
    Filed: April 25, 2007
    Publication date: August 26, 2010
    Inventors: Tetsuya Shoji, Naoki Nakamura, Akira Kato, Shinpei Yamamoto, Mikio Takano, Teruo Ono
  • Publication number: 20100163141
    Abstract: An Mg alloy provided with high strength and high ductility by matching the strength and ductility in tensile deformation and compressive deformation at the same levels is provided. The Mg alloy of the present invention is characterized by having a chemical composition consisting of Y: 0.1 to 1.5 at % and a balance of Mg and unavoidable impurities and having a microstructure with high Y regions with Y concentrations higher than an average Y concentration distributed at nanometer order sizes and intervals. The present invention further provides an Mg alloy characterized by having a chemical composition consisting of Y: more than 0.1 at % and a valance of Mg and unavoidable impurities, having a microstructure with high Y regions with Y concentrations higher than an average Y concentration distributed at nanometer order sizes and intervals and having an average recrystallized grain size within the range satisfying the following formula 1: ?0.87c+1.10<log d<1.14c+1.
    Type: Application
    Filed: March 26, 2008
    Publication date: July 1, 2010
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, National Institute for Materials Science
    Inventors: Tetsuya Shoji, Akira Kato, Toshiji Mukai, Hidetoshi Somekawa
  • Publication number: 20100104767
    Abstract: A nanocomposite magnet having a core-shell structure that includes a hard magnetic phase of an Nd2Fe14B compound as a core and a soft magnetic phase of Fe as a shell is produced by adding and dispersing particles of the Nd2Fe14B compound into a solvent that contains a surface-active agent, and then adding thereto an Fe precursor so as to cause Fe particles on the surface of the Nd2Fe14B compound, and drying and sintering the particles of the Nd2Fe14B compound.
    Type: Application
    Filed: November 1, 2007
    Publication date: April 29, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noritsugu Sskuma, Tetsuya Shoji
  • Publication number: 20100061874
    Abstract: A nanocomposite magnet containing an Fe particle in the grain boundary of an Nd2Fe14B compound particle is produced by mixing a dispersion of the Nd2Fe14B compound particle in a solvent containing a surface-active agent and a dispersion of the Fe particle in a solvent containing a surface-active agent, and then supporting the Fe particle on the surface of the Nd2Fe14B compound particle by stirring the mixture of the dispersions while adding an amphiphilic solvent, and then performing the drying and the drying and the sintering.
    Type: Application
    Filed: November 27, 2007
    Publication date: March 11, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noritsugu Sakuma, Tetsuya Shoji