Patents by Inventor Teunis Cornelis Van den Dool

Teunis Cornelis Van den Dool has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11650224
    Abstract: The invention is directed at a method of positioning a carrier on a flat surface using an positioning member, wherein the carrier comprises an upper part and a base which are connected to each other such as to be arranged remote from each other, wherein the positioning member is arranged between the base and the upper part such that the base is located at an opposite side of the positioning member with respect to the upper part of the carrier, the upper part resting on the positioning member prior to placing of the carrier onto the flat surface, wherein the upper part comprises three engagement elements, and wherein the positioning member comprises a support surface for receiving the three engagement elements of the upper part, said support surface including a plurality of sockets forming a kinematic mount for said three engagement elements, wherein the base comprises three landing elements, each landing element being associated with a respective one of the three engagement elements, and the method comprising
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: May 16, 2023
    Assignee: Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO
    Inventors: Hamed Sadeghian Marnani, Jasper Winters, William Edward Crowcombe, Teunis Cornelis van den Dool, Geerten Frans Ijsbrand Kramer, Albert Dekker
  • Patent number: 11371931
    Abstract: Methods and instruments for measuring a liquid sample (S1) in a well plate (50) by means of an optical chip 10. The chip (10) comprises an optical sensor (13) that is accessible to the liquid sample (S1) at a sampling area (SA) of the chip. A free-space optical coupler (11,12) is accessible to receive input light (L1) and/or emit output light (L2) via a coupling area (CA) of the chip (10). The sampling area (SA) of the chip 10 is submerged in the liquid sample (S1) while keeping the liquid sample (S1) away from the coupling area (CA) for interrogating the optical coupler (11,12) via an optical path (P) that does not pass through the liquid sample (S1).
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: June 28, 2022
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Bart Michiel De Boer, Peter Johan Harmsma, Michiel Peter Oderwald, Teunis Cornelis Van Den Dool
  • Publication number: 20210356389
    Abstract: Methods and instruments for measuring a liquid sample (S1) in a well plate (50) by means of an optical chip 10. The chip (10) comprises an optical sensor (13) that is accessible to the liquid sample (S1) at a sampling area (SA) of the chip. A free-space optical coupler (11,12) is accessible to receive input light (L1) and/or emit output light (L2) via a coupling area (CA) of the chip (10). The sampling area (SA) of the chip 10 is submerged in the liquid sample (S1) while keeping the liquid sample (S1) away from the coupling area (CA) for interrogating the optical coupler (11,12) via an optical path (P) that does not pass through the liquid sample (S1).
    Type: Application
    Filed: January 12, 2018
    Publication date: November 18, 2021
    Applicant: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Bart Michiel DE BOER, Peter Johan HARMSMA, Michiel Peter ODERWALD, Teunis Cornelis VAN DEN DOOL
  • Patent number: 10928361
    Abstract: A fluid density measuring device uses a pipe with a pipe wall that has an inner wall surface with a non-circular cross-section at least in an axial segment of the pipe. Preferably, the inner wall surface comprises one or more protrusions extending inwardly into the pipe and along the axial direction of the pipe. An ultrasound transducer located on the pipe wall is used to generate local motion of the pipe wall with a circumferential direction of motion. Preferably, the ultrasound transducer is located between successive protrusions. An ultrasound receiver located on the pipe wall receives an ultrasound torsion wave generated by the local motion after the torsion wave has traveled through the axial section wherein the inner wall surface has a non-circular cross-section. The fluid density is determined from the propagation speed of the torsion wave.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: February 23, 2021
    Assignee: NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK TNO
    Inventors: Paul Louis Maria Joseph van Neer, Arno Willem Frederik Volker, Teunis Cornelis van den Dool
  • Patent number: 10761315
    Abstract: According to an aspect of the invention, there is provided a mirror structure for adaptive optics devices, characterized in that it comprises: an elastically deformable layer in response to an applied force, said deformable layer comprising a central portion reflective to said an incident light beam (F); a support substrate positioned spaced with respect to said deformable layer; a spacer element connected to said elastically deformable layer and support substrate and positioned there between, said spacer element being arranged so that the separation distance between said first and second inner surface is in the range between 2 and 100 micron; an inner chamber at least partially defined by said first and substrate and by said spacer element, said inner chamber containing a pressurized gas (G); an actuator system capable of causing a deformation of said central portion counteracting the pressure of said pressurized gas; wherein, in use, said central portion is deformed according to profiles such as to control
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: September 1, 2020
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Erwin John van Zwet, Teunis Cornelis van den Dool, Evert Nieuwkoop
  • Publication number: 20200081034
    Abstract: The invention is directed at a method of positioning a carrier on a flat surface using an positioning member, wherein the carrier comprises an upper part and a base which are connected to each other such as to be arranged remote from each other, wherein the positioning member is arranged between the base and the upper part such that the base is located at an opposite side of the positioning member with respect to the upper part of the carrier, the upper part resting on the positioning member prior to placing of the carrier onto the flat surface, wherein the upper part comprises three engagement elements, and wherein the positioning member comprises a support surface for receiving the three engagement elements of the upper part, said support surface including a plurality of sockets forming a kinematic mount for said three engagement elements, wherein the base comprises three landing elements, each landing element being associated with a respective one of the three engagement elements, and the method comprising
    Type: Application
    Filed: November 14, 2019
    Publication date: March 12, 2020
    Applicant: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Hamed Sadeghian Marnani, Jasper Winters, William Edward Crowcombe, Teunis Cornelis van den Dool, Geerten Frans Ijsbrand Kramer, Albert Dekker
  • Patent number: 10495667
    Abstract: The invention is directed at a method of positioning a carrier on a flat surface using an positioning member, wherein the carrier comprises an upper part and a base which are connected to each other such as to be arranged remote from each other, wherein the positioning member is arranged between the base and the upper part such that the base is located at an opposite side of the positioning member with respect to the upper part of the carrier, the upper part resting on the positioning member prior to placing of the carrier onto the flat surface, wherein the upper part comprises three engagement elements, and wherein the positioning member comprises a support surface for receiving the three engagement elements of the upper part, said support surface including a plurality of sockets forming a kinematic mount for said three engagement elements, wherein the base comprises three landing elements, each landing element being associated with a respective one of the three engagement elements, and the method comprising
    Type: Grant
    Filed: July 3, 2015
    Date of Patent: December 3, 2019
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Hamed Sadeghian Marnani, Jasper Winters, William Edward Crowcombe, Teunis Cornelis van den Dool, Geerten Frans Ijsbrand Kramer, Albert Dekker
  • Publication number: 20190004310
    Abstract: According to an aspect of the invention, there is provided a mirror structure for adaptive optics devices, characterized in that it comprises: an elastically deformable layer in response to an applied force, said deformable layer comprising a central portion reflective to said an incident light beam (F); a support substrate positioned spaced with respect to said deformable layer; a spacer element connected to said elastically deformable layer and support substrate and positioned there between, said spacer element being arranged so that the separation distance between said first and second inner surface is in the range between 2 and 100 micron; an inner chamber at least partially defined by said first and substrate and by said spacer element, said inner chamber containing a pressurized gas (G); an actuator system capable of causing a deformation of said central portion counteracting the pressure of said pressurized gas; wherein, in use, said central portion is deformed according to profiles such as to control
    Type: Application
    Filed: December 16, 2016
    Publication date: January 3, 2019
    Inventors: Erwin John VAN ZWET, Teunis Cornelis VAN DEN DOOL, Evert NIEUWKOOP
  • Publication number: 20180299256
    Abstract: The thickness of an at least partially transparent layer is measured using wavelength band limited light, with a coherence length that is less than twice the thickness of the layer. Reflections from layer are fed to a 2-n coupler (n>2) via optical transmission paths of different optical length. The 2-n coupler mix light from the path into n combinations of light from the paths, each combination with a different mutual phase offset between the light from the two paths. This leads to coherent interference between reflections from the front and back of the layer when the difference between the optical lengths of the optical transmission paths compensates for the path between reflection from the front and the back. A processing circuit computes information indicative of a phase difference between the reflections from n intensities of the 2-n coupler. The use of n>2 signals makes it possible to eliminate the influence of reflection amplitude variations on the computed phase difference.
    Type: Application
    Filed: October 3, 2016
    Publication date: October 18, 2018
    Applicant: Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO
    Inventors: Lun Kai CHENG, Teunis Cornelis VAN DEN DOOL, Willem DE JONG
  • Publication number: 20180299409
    Abstract: A fluid density measuring device uses a pipe with a pipe wall that has an inner wall surface with a non-circular cross-section at least in an axial segment of the pipe. Preferably, the inner wall surface comprises one or more protrusions extending inward into the pipe and along the axial direction of the pipe. An ultrasound transducer located on the pipe wall is used to generate local motion of the pipe wall with a circumferential direction of motion. Preferably, the ultrasound transducer is located between successive protrusions. An ultrasound receiver located on the pipe wall receives an ultrasound torsion wave generated by said local motion after the torsion wave has traveled through the axial section wherein the inner wall surface has a non-circular cross-section. The fluid density is determined from the propagation speed of the torsion wave.
    Type: Application
    Filed: November 16, 2016
    Publication date: October 18, 2018
    Inventors: Paul Louis Maria Joseph van Neer, Arno Willem Frederik Volker, Teunis Cornelis van den Dool
  • Patent number: 10067158
    Abstract: The invention is directed at a method of performing scanning probe microscopy on a substrate surface using a scanning probe microscopy system, the system including at least one probe head, the probe head comprising a probe tip arranged on a cantilever and a tip position detector for determining a position of the probe tip along a z-direction transverse to an image plane, the method comprising: positioning the at least one probe head relative to the substrate surface; moving the probe tip and the substrate surface relative to each other in one or more directions parallel to the image plane for scanning of the substrate surface with the probe tip; and determining the position of the probe tip with the tip position detector during said scanning for mapping nanostructures on the substrate surface; wherein said step of positioning is performed by placing the at least one probe head on a static carrier surface.
    Type: Grant
    Filed: July 3, 2015
    Date of Patent: September 4, 2018
    Assignee: Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek TNO
    Inventors: Hamed Sadeghian Marnani, Jasper Winters, William Edward Crowcombe, Teunis Cornelis van den Dool, Geerten Frans Ijsbrand Kramer
  • Patent number: 9880194
    Abstract: The disclosure concerns an actuator module (10) for actuating a load (14). The actuator module (10) comprises a deformable frame (1) and an actuator (2) connected to the deformable frame (1). A time-varying force distribution (F) couples to an excited state (V0) of an eigenmode (V) of the deformable frame (1). The force distribution (F), as well as a stiffness distribution (K) and/or mass distribution (M) of the deformable frame 1 are adapted such that static nodal points (11s) of the deformable frame 1 are coincided with mode nodal points (11m). The locations where the nodal points coincide can be used to connect the actuator module (10) to a base frame to reduce transfer of vibrations to the base frame and back which may otherwise undesirably influence the transfer function from actuator to load. The disclosure further concerns a method for designing and/or manufacturing the actuator module.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: January 30, 2018
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Gerrit Witvoet, Teunis Cornelis van den Dool, William Edward Crowcombe, Theodorus Jacobus de Lange, Hajo Pieter Pereboom
  • Patent number: 9766266
    Abstract: The invention is directed at a method of advancing a probe tip of a probe of a scanning microscopy device towards a sample surface. The scanning microscopy device comprises the probe for scanning the sample surface for mapping nanostructures on the sample surface. The probe tip of the probe is mounted on a cantilever arranged for bringing the probe tip in contact with the sample surface. The method comprises controlling, by a controller, an actuator system of the device for moving the probe to the sample surface, and receiving, by the controller, a sensor signal indicative of at least one operational parameter of the probe for providing feedback to perform said controlling.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: September 19, 2017
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Hamed Sadeghian Marnani, Geerten Frans Ijsbrand Kramer, Teunis Cornelis van den Dool
  • Publication number: 20170146564
    Abstract: The invention is directed at a method of positioning a carrier on a flat surface using an positioning member, wherein the carrier comprises an upper part and a base which are connected to each other such as to be arranged remote from each other, wherein the positioning member is arranged between the base and the upper part such that the base is located at an opposite side of the positioning member with respect to the upper part of the carrier, the upper part resting on the positioning member prior to placing of the carrier onto the flat surface, wherein the upper part comprises three engagement elements, and wherein the positioning member comprises a support surface for receiving the three engagement elements of the upper part, said support surface including a plurality of sockets forming a kinematic mount for said three engagement elements, wherein the base comprises three landing elements, each landing element being associated with a respective one of the three engagement elements, and the method comprising
    Type: Application
    Filed: July 3, 2015
    Publication date: May 25, 2017
    Inventors: Hamed Sadeghian Marnani, Jasper Winters, William Edward Crowcombe, Teunis Cornelis van den Dool, Geerten Frans Ijsbrand Kramer, Albert Dekker
  • Publication number: 20170131323
    Abstract: The invention is directed at a method of performing scanning probe microscopy on a substrate surface using a scanning probe microscopy system, the system including at least one probe head, the probe head comprising a probe tip arranged on a cantilever and a tip position detector for determining a position of the probe tip along a z-direction transverse to an image plane, the method comprising: positioning the at least one probe head relative to the substrate surface; moving the probe tip and the substrate surface relative to each other in one or more directions parallel to the image plane for scanning of the substrate surface with the probe tip; and determining the position of the probe tip with the tip position detector during said scanning for mapping nanostructures on the substrate surface; wherein said step of positioning is performed by placing the at least one probe head on a static carrier surface.
    Type: Application
    Filed: July 3, 2015
    Publication date: May 11, 2017
    Applicant: Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO
    Inventors: Hamed Sadeghian Marnani, Jasper Winters, William Edward Crowcombe, Teunis Cornelis van den Dool, Geerten Frans ljsbrand Kramer
  • Publication number: 20170108531
    Abstract: The disclosure concerns an actuator module (10) for actuating a load (14). The actuator module (10) comprises a deformable frame (1) and an actuator (2) connected to the deformable frame (1). A time-varying force distribution (F) couples to an excited state (V0) of an eigenmode (V) of the deformable frame (1). The force distribution (F), as well as a stiffness distribution (K) and/or mass distribution (M) of the deformable frame 1 are adapted such that static nodal points (11s) of the deformable frame 1 are coincided with mode nodal points (11m). The locations where the nodal points coincide can be used to connect the actuator module (10) to a base frame to reduce transfer of vibrations to the base frame and back which may otherwise undesirably influence the transfer function from actuator to load. The disclosure further concerns a method for designing and/or manufacturing the actuator module.
    Type: Application
    Filed: March 31, 2015
    Publication date: April 20, 2017
    Inventors: Gerrit WITVOET, Teunis Cornelis VAN DEN DOOL, William Edward CROWCOMBE, Theodorus Jacobus DE LANGE, Hajo Pieter PEREBOOM
  • Patent number: 9622763
    Abstract: The invention relates to an instrument, preferably for minimally invasive surgery, comprising a frame (27) having a proximal end and a distal end, a first working element (4) having a first origin located at the distal end and a second working element (5) having a second origin and being arranged at the distal end cooperating with the first working element, a force sensor for measuring a force exerted on at least one of the said the first and the second working elements, wherein the distal end of the frame comprises an opening (23) between the first origin and the second origin, the force sensor being arranged on the frame in a vicinity of the opening.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: April 18, 2017
    Assignees: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO, Vleugels Holding B.V.
    Inventors: Teunis Cornelis van den Dool, Geerten Frans Ijsbrand Kramer, Erik Tabak, Michiel Peter Oderwald
  • Patent number: 9599908
    Abstract: An immersion lithographic apparatus is cleaned by use of a cleaning liquid consisting essentially of ultra-pure water and (a) a mixture of hydrogen peroxide and ozone, or (b) hydrogen peroxide at a concentration of up to 5%, or (c) ozone at a concentration of up to 50 ppm, or (d) oxygen at concentration of up to 10 ppm, or (e) any combination selected from (a)-(d).
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: March 21, 2017
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Anthonius Martinus Cornelis Petrus De Jong, Hans Jansen, Martinus Hendrikus Antonius Leenders, Antonius Johannus Van Der Net, Peter Franciscus Wanten, Jacques Cor Johan Van Der Donck, Robert Douglas Watso, Teunis Cornelis Van Den Dool, Nadja Schuh, Jan Willem Cromwijk
  • Patent number: 9488247
    Abstract: An active vibration isolation and damping system (11) comprising a payload (12) that has to be isolated or damped, a vibration sensor (14) for detecting a vibration of the payload, an actuator (15) for moving the payload relative to a bearing body (13) supporting the payload, and a controller (16) for providing the actuator with a signal that is representative for the vibration. The system provides a solution for the tilting problem by applying a vibration sensor that has a low stiffness connection to the payload (12) for rotation along an axis (17) perpendicular to the gravitational force (18), and a high stiffness connection to the payload (12) for the vibration detectable with the vibration sensor.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: November 8, 2016
    Assignee: MECAL B.V.
    Inventors: Niek Rijnveld, Teunis Cornelis van den Dool
  • Patent number: 9476908
    Abstract: An object is mounted on a surface of a sample carrier. Properties of the surface of the object are measured and/or modified by means of a plurality of independently movable heads, each comprising a microscopic probe. The heads being located between the surface of a reference grid plate and the surface of the sample carrier. Head specific target locations are selected for the heads. Each head is moved over the surface of the reference grid plate, to the target location of the head. During movement a position of the head is determined from markings on the reference grid plate sensed by sensor in the head. When the sensor has indicated that the head is at the target location selected for the head a force between the head and the reference grid plate is switched to seat and/or clamp the head on the reference grid plate.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: October 25, 2016
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Rens Van Den Braber, Teunis Cornelis Van Den Dool, Hamed Sadeghian Marnani, Niek Rijnveld