Patents by Inventor Thanh Huy Le

Thanh Huy Le has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11963871
    Abstract: Devices and methods for crimping a prosthetic heart valve onto a delivery device are described. In some embodiments, valves are crimped over an inflatable balloon and between proximal and distal shoulders mounted on a shaft inside the balloon. Crimping methods can include multiple compression steps with the valve located in different axial positions relative to the crimping jaws at each different step. In some methods, the valve may extend partially outside of the crimping jaws during certain crimping steps, such that the crimping force is only applied to the part of the valve that is inside the jaws. Exemplary crimping devices can include two or more adjacent sets of jaws that close down to different inner diameters, such that different parts of a valve get compressed to different outer diameters at the same time during a single crimping step.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: April 23, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Nicholas Brandon Aders, Kristen Hicks, Gil Senesh, Michael R. Bialas, Tung T. Le, Sean Chow, Thanh Huy Le
  • Patent number: 11931259
    Abstract: Disclosed herein are expandable introducer sheaths and methods of making and using the same. The sheaths minimize trauma to a patient's vasculature by allowing for temporary expansion of a portion of the sheath to accommodate passage of a delivery system for an implant, then return to a non-expanded state after the passage of the device. The sheath includes a foldable inner member having a detached flap structure at its distal tip that facilitates expansion of the sheath lumen to increased diameters, and an elastomeric distal end that reduces push and retrieval forces therethrough. The sheath can include a hemostasis seal on its proximal end to prevent the leakage of blood out of the sheath and prevent ballooning of outer layer of the sheath.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: March 19, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Thanh Huy Le, Tung T. Le, Sovanpheap Mak, Alpana Kiran Gowdar, Richard D. White, Sonny Tran
  • Publication number: 20230380966
    Abstract: A method of delivery a prosthetic heart valve includes inserting a delivery apparatus and a prosthetic heart valve into a patient's vasculature. The delivery apparatus includes a steerable guide catheter, a balloon catheter, and a flex indicator. The balloon catheter extends coaxially through the guide catheter, the prosthetic heart valve is mounted on a distal end portion of the balloon catheter, and the flex indicator is movably coupled to a handle of the guide catheter. The method further includes adjusting flexion of a steerable section of the guide catheter to position the prosthetic heart valve. The flex indicator moves relative to the handle of the guide catheter as the flexion of the steerable section is adjusted, and the handle comprises one or more visual indicators adjacent the flex indicator to provide visual indication of an amount of flexion of the steerable section of the guide catheter.
    Type: Application
    Filed: August 7, 2023
    Publication date: November 30, 2023
    Applicant: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Thanh Huy Le, Tri D. Tran, Ronaldo C. Cayabyab, David M. Taylor, Antonio O. Vidal, Robert Bowes, Tram Ngoc Nguyen, Walter Lee
  • Publication number: 20230329863
    Abstract: A method of implanting a prosthetic heart valve includes advancing a distal end portion of a catheter shaft through a patient's vasculature. The distal end portion of the catheter shaft includes an expansion device. A prosthetic heart valve is mounted on the expansion device with the expansion device and the prosthetic heart valve in a compressed configuration. The method further includes positioning the distal end portion of the catheter shaft and the prosthetic heart valve to an implantation location and expanding the prosthetic heart valve and the expansion device to an expanded configuration. The expansion device includes a main body and a plurality of projections extending radially from the main body. The projections are spaced apart relative to each such that there are grooves extending between adjacent projections providing perfusion passageways between the expansion device and the prosthetic heart valve when the expansion device is in the expanded configuration.
    Type: Application
    Filed: June 15, 2023
    Publication date: October 19, 2023
    Inventors: Gilbert Madrid, Matthew T. Winston, Sam Sok, Thanh Huy Le, Tri D. Tran, Kim Le, Michael D. Franklin
  • Publication number: 20230301783
    Abstract: A delivery apparatus for implanting a radially compressible and expandable prosthetic heart valve in a native heart valve of the heart includes a handle portion and a balloon catheter assembly comprising an elongated balloon catheter shaft extending from the handle portion. The balloon catheter shaft includes a proximal end portion coupled to the handle portion and a distal end portion. The balloon catheter assembly further includes a balloon coupled to the distal end portion and configured to mount a prosthetic heart valve in a radially compressed state. A protective cover encapsulates the balloon, the cover defining a cavity shaped to accommodate the balloon.
    Type: Application
    Filed: June 5, 2023
    Publication date: September 28, 2023
    Inventors: Kevin D. Rupp, Tung T. Le, Thanh Huy Le, Brian C. Gray, Alejandro J. Froimovich Rosenberg, Jeff Lindstrom, Kim D. Nguyen, Sonny Tran
  • Patent number: 11717403
    Abstract: A method of implanting a prosthetic heart valve includes advancing a distal end portion of a catheter shaft through a patient's vasculature. The distal end portion of the catheter shaft includes an expansion device. A prosthetic heart valve is mounted on the expansion device with the expansion device and the prosthetic heart valve in a compressed configuration. The method further includes positioning the distal end portion of the catheter shaft and the prosthetic heart valve to an implantation location, and expanding the prosthetic heart valve and the expansion device from the compressed configuration to an expanded configuration. The expansion device includes an inner expandable member and a plurality of outer expandable members. The outer expandable members are distributed such that there are gaps providing perfusion passageways between the expansion device and the prosthetic heart valve when the expansion device is in the expanded configuration.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: August 8, 2023
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Gilbert Madrid, Matthew T. Winston, Sam Sok, Thanh Huy Le, Tri D. Tran, Kim Le, Michael D. Franklin
  • Patent number: 11707357
    Abstract: A delivery apparatus for implanting a radially compressible and expandable prosthetic heart valve in a native heart valve of the heart includes a handle portion and an elongated shaft extending from and movable relative to the handle portion. The shaft includes a proximal end portion coupled to the handle portion and a distal end portion configured to mount a prosthetic heart valve in a radially compressed state. The handle portion includes a control member movable longitudinally with respect to the handle portion, the control member engaging a gear assembly operable to convert longitudinal motion of the control member to rotational motion of the gear assembly. The gear assembly engages the elongated shaft such that rotational motion of the gear assembly causes corresponding longitudinal motion of the elongated shaft relative to the handle portion.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: July 25, 2023
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Kevin D. Rupp, Tung T. Le, Thanh Huy Le, Brian C. Gray, Alejandro J. Froimovich Rosenberg, Jeff Lindstrom, Kim D. Nguyen, Sonny Tran
  • Publication number: 20230103353
    Abstract: Devices and methods for crimping a prosthetic heart valve onto a delivery device are described. In some embodiments, valves are crimped over an inflatable balloon and between proximal and distal shoulders mounted on a shaft inside the balloon. Crimping methods can include multiple compression steps with the valve located in different axial positions relative to the crimping jaws at each different step. In some methods, the valve may extend partially outside of the crimping jaws during certain crimping steps, such that the crimping force is only applied to the part of the valve that is inside the jaws. Exemplary crimping devices can include two or more adjacent sets of jaws that close down to different inner diameters, such that different parts of a valve get compressed to different outer diameters at the same time during a single crimping step.
    Type: Application
    Filed: December 13, 2022
    Publication date: April 6, 2023
    Inventors: Nicholas Brandon Aders, Kristen Hicks, Gil Senesh, Michael R. Bialas, Tung T. Le, Sean Chow, Thanh Huy Le
  • Publication number: 20220379094
    Abstract: A delivery sheath includes an outer tubular layer and an initially folded inner tubular layer. When an implant passes therethrough, the outer tubular layer expands and the inner tubular layer unfolds into an expanded lumen diameter. The sheath may also include selectively placed longitudinal support rods that mediate friction between the inner and outer tubular layers to facilitate easy expansion, thereby reducing the push force needed to advance the implant through the sheath's lumen.
    Type: Application
    Filed: August 8, 2022
    Publication date: December 1, 2022
    Applicant: Edwards Lifesciences Corporation
    Inventors: Pu Zhou, Erik Bulman, Timothy A. Geiser, Michael G. Valdez, Yidong M. Zhu, Baigui Bian, Sonny Tran, Richard D. White, Thanh Huy Le, Tung T. Le, Alpana Kiran Gowdar, Yong Gao, David Delon Williams
  • Patent number: 11420026
    Abstract: A delivery sheath includes an outer tubular layer and an initially folded inner tubular layer. When an implant passes therethrough, the outer tubular layer expands and the inner tubular layer unfolds into an expanded lumen diameter. The sheath may also include selectively placed longitudinal support rods that mediate friction between the inner and outer tubular layers to facilitate easy expansion, thereby reducing the push force needed to advance the implant through the sheath's lumen.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: August 23, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: Pu Zhou, Erik Bulman, Timothy A. Geiser, Michael G. Valdez, Yidong M. Zhu, Baigui Bian, Sonny Tran, Richard D. White, Thanh Huy Le, Tung T. Le, Alpana Kiran Gowdar, Yong Gao, David Delon Williams
  • Patent number: 11406796
    Abstract: A delivery sheath includes an outer tubular layer and an initially folded inner tubular layer. When an implant passes therethrough, the outer tubular layer expands and the inner tubular layer unfolds into an expanded lumen diameter. The sheath may also include selectively placed longitudinal support rods that mediate friction between the inner and outer tubular layers to facilitate easy expansion, thereby reducing the push force needed to advance the implant through the sheath's lumen.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: August 9, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: Pu Zhou, Erik Bulman, Timothy A. Geiser, Michael G. Valdez, Yidong M. Zhu, Baigui Bian, Sonny Tran, Richard D. White, Thanh Huy Le, Tung T. Le, Alpana Kiran Gowdar, Yong Gao, David Delon Williams
  • Publication number: 20220226115
    Abstract: Embodiments of a balloon assembly are disclosed. The balloon assembly can include an inflatable balloon having an inflated state and a deflated state. The balloon in the deflated state can include a valve retaining portion, a distal tapered portion connected to a distal end of the valve retaining portion, a proximal tapered portion connected to a proximal end of the valve retaining portion, a distal leg connected to the distal end of the distal tapered portion, and a proximal leg connected to the proximal end of the proximal tapered portion. The distal tapered portion can include one or more axial folds. The proximal end of the distal tapered portion can include a first radial fold connected to a second radial fold, the first and second radial folds forming a pocket extending distally at the proximal end of the distal tapered portion.
    Type: Application
    Filed: April 6, 2022
    Publication date: July 21, 2022
    Inventors: Tung T. Le, Thanh Huy Le, Sovanpheap Mak, Maria L. Saravia, Kim D. Nguyen, Sonny Tran, David John Loos, Neal H. Avery
  • Publication number: 20220000618
    Abstract: Disclosed embodiments of introducer devices provide hemostatic sealing and allow a delivery catheter to be inserted through the introducer seals without the use of a separate loader device that covers a medical device that is mounted on the catheter. Some disclosed introducers comprise a housing, a distal sheath extending distally from the housing and adapted to be inserted into a patient's vasculature, a distal hemostatic seal mounted within the housing and a proximal hemostatic seal mounted within the housing, and a slidable tube positioned within the housing that is movable longitudinally relative to the distal hemostatic seal between a proximal position and a distal position, wherein in the proximal position a distal end of the tube is positioned proximal to the distal hemostatic seal with the distal hemostatic seal closed, and wherein in the distal position the distal end of the tube extends through the distal hemostatic seal.
    Type: Application
    Filed: September 20, 2021
    Publication date: January 6, 2022
    Applicant: Edwards Lifesciences Corporation
    Inventors: Brian C. Gray, Tung T. Le, Andrew Oien, Sonny Tran, Thanh Huy Le, Robert Bowes, Maria L. Saravia, Uy D. Trinh, Hamid Rafi, Alejandro J. Froimovich Rosenberg
  • Patent number: 11123188
    Abstract: Disclosed embodiments of introducer devices provide hemostatic sealing and allow a delivery catheter to be inserted through the introducer seals without the use of a separate loader device that covers a medical device that is mounted on the catheter. Some disclosed introducers comprise a housing, a distal sheath extending distally from the housing and adapted to be inserted into a patient's vasculature, a distal hemostatic seal mounted within the housing and a proximal hemostatic seal mounted within the housing, and a slidable tube positioned within the housing that is movable longitudinally relative to the distal hemostatic seal between a proximal position and a distal position, wherein in the proximal position a distal end of the tube is positioned proximal to the distal hemostatic seal with the distal hemostatic seal closed, and wherein in the distal position the distal end of the tube extends through the distal hemostatic seal.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: September 21, 2021
    Assignee: Edwards Lifesciences Corporation
    Inventors: Brian C. Gray, Tung T. Le, Andrew Oien, Sonny Tran, Thanh Huy Le, Robert Bowes, Maria L. Saravia, Uy D. Trinh, Hamid Rafi, Alejandro J. Froimovich Rosenberg
  • Publication number: 20210259835
    Abstract: Catheterization methods and apparatuses allow sensing of pressures inside the heart and for removing air from catheters. A delivery system can use the same components that are used to deliver a valve repair or replacement device to measure the pressure in the atrium or other heart chamber. A pressure sensor can be included in one of the catheters of the delivery system or pressure can be sensed through the same port that is used to flush a catheter. The delivery system can be inserted into the heart, delivering the valve repair or replacement device to the native valve, such as the mitral valve, the tricuspid valve, the aortic valve, or the pulmonary valve.
    Type: Application
    Filed: May 7, 2021
    Publication date: August 26, 2021
    Inventors: Gregory Scott Tyler, II, Thanh Huy Le, Tam Van Nguyen, Daniel James Montoya, Grant Matthew Stearns, Eric Robert Dixon
  • Publication number: 20200353221
    Abstract: A delivery sheath includes an outer tubular layer and an initially folded inner tubular layer. When an implant passes therethrough, the outer tubular layer expands and the inner tubular layer unfolds into an expanded lumen diameter. The sheath may also include selectively placed longitudinal support rods that mediate friction between the inner and outer tubular layers to facilitate easy expansion, thereby reducing the push force needed to advance the implant through the sheath's lumen.
    Type: Application
    Filed: July 23, 2020
    Publication date: November 12, 2020
    Inventors: Pu Zhou, Erik Bulman, Timothy A. Geiser, Michael G. Valdez, Yidong M. Zhu, Baigui Bian, Sonny Tran, Richard D. White, Thanh Huy Le, Tung T. Le, Alpana Kiran Gowdar
  • Patent number: 10792471
    Abstract: A delivery sheath includes an elastic outer tubular layer and an inner tubular layer having a thick wall portion integrally connected to a thin wall portion. The inner tubular layer can have a compressed or folded condition wherein the thin wall portion folds onto an outer surface of the thick wall portion under urging of the elastic outer tubular layer. When an implant passes therethrough, the outer tubular layer stretches and the inner tubular layer unfolds into an expanded lumen diameter. Once the implant passes, the outer tubular layer again urges the inner tubular layer into the compressed condition with the sheath reassuming its smaller profile. The sheath may also include selectively placed longitudinal rods that mediate friction between the inner and outer tubular layers to facilitate easy expansion and collapse, thereby reducing the push force needed to advance the implant through the sheath's lumen.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: October 6, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Pu Zhou, Erik Bulman, Timothy A. Geiser, Michael G. Valdez, Yidong M. Zhu, Baigui Bian, Sonny Tran, Richard D. White, Thanh Huy Le, Tung T. Le, Alpana Kiran Gowdar
  • Publication number: 20200261227
    Abstract: Disclosed herein are expandable introducer sheaths and methods of making and using the same. The sheaths minimize trauma to a patient's vasculature by allowing for temporary expansion of a portion of the sheath to accommodate passage of a delivery system for an implant, then return to a non-expanded state after the passage of the device. The sheath includes a foldable inner member having a detached flap structure at its distal tip that facilitates expansion of the sheath lumen to increased diameters, and an elastomeric distal end that reduces push and retrieval forces therethrough. The sheath can include a hemostasis seal on its proximal end to prevent the leakage of blood out of the sheath and prevent ballooning of outer layer of the sheath.
    Type: Application
    Filed: May 4, 2020
    Publication date: August 20, 2020
    Inventors: Thanh Huy Le, Tung T. Le, Sovanpheap Mak, Alpana Kiran Gowdar, Richard D. White, Sonny Tran
  • Publication number: 20200237504
    Abstract: A valve catheter is advanced through a patient's vasculature while a prosthetic heart valve is attached to flexible extensions along a distal end thereof. The valve catheter is advanced through a tubular sleeve for exposing the prosthetic heart valve and allowing the prosthetic heart valve to self-expand while the extensions remain attached to the prosthetic heart valve. A release mechanism on a handle portion is actuated for releasing the prosthetic heart valve from the extensions, thereby implanting the prosthetic heart in a native heart valve. If the operator is not satisfied with the initial expansion, the prosthetic heart valve may be reoriented before release from the extensions by retracting the prosthetic heart valve back into the tubular sleeve, adjusting the orientation of the prosthetic heart valve and then re-advancing the valve catheter from the tubular sleeve for allowing the prosthetic heart valve to re-self-expand at a more desirable location.
    Type: Application
    Filed: April 15, 2020
    Publication date: July 30, 2020
    Inventors: Henry Bourang, Thanh Huy Le, David M. Taylor, Sam Sok, Mario Iobbi, David J. Evans, Rajesh A. Khanna
  • Patent number: 10716919
    Abstract: A delivery sheath includes an outer tubular layer and an initially folded inner tubular layer. When an implant passes therethrough, the outer tubular layer expands and the inner tubular layer unfolds into an expanded lumen diameter. The sheath may also include selectively placed longitudinal support rods that mediate friction between the inner and outer tubular layers to facilitate easy expansion, thereby reducing the push force needed to advance the implant through the sheath's lumen.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: July 21, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Pu Zhou, Erik Bulman, Timothy A. Geiser, Michael G. Valdez, Yidong M. Zhu, Baigui Bian, Sonny Tran, Richard D. White, Thanh Huy Le, Tung T. Le, Alpana K. Gowdar, Yong Gao, David D. Williams