Patents by Inventor Thanh X. Nguyen

Thanh X. Nguyen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9087679
    Abstract: Embodiments of the invention generally relate to a grounding kit for a semiconductor processing chamber, and a semiconductor processing chamber having a grounding kit. More specifically, embodiments described herein relate to a grounding kit which creates an asymmetric grounding path selected to significantly reduce the asymmetries caused by an off center RF power delivery.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: July 21, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Muhammad M. Rasheed, Rongjun Wang, Thanh X. Nguyen, Alan A. Ritchie
  • Publication number: 20150170888
    Abstract: Embodiments of target assemblies for use in substrate processing chambers are provided herein. In some embodiments, a target assembly includes a plate comprising a first side including a central portion and a support portion; a target disposed on the central portion; a plurality of recesses formed in the support portion; and a plurality of pads partially disposed in the plurality of recesses.
    Type: Application
    Filed: February 18, 2014
    Publication date: June 18, 2015
    Applicant: APPLIED MATERIALS, INC.
    Inventors: MARTIN LEE RIKER, UDAY PAI, WILLIAM FRUCHTERMAN, KEITH A. MILLER, MUHAMMAD M. RASHEED, THANH X. NGUYEN, KIRANKUMAR SAVANDAIAH
  • Patent number: 8895450
    Abstract: Embodiments described herein provide a semiconductor device and methods and apparatuses of forming the same. The semiconductor device includes a substrate having a source and drain region and a gate electrode stack on the substrate between the source and drain regions. In one embodiment, the method includes positioning a substrate within a processing chamber, wherein the substrate includes a source and drain region, a gate dielectric layer between the source and drain regions, and a conductive film layer on the gate dielectric layer. The method also includes depositing a refractory metal nitride film layer on the conductive film layer, depositing a silicon-containing film layer on the refractory metal nitride film layer, and depositing a tungsten film layer on the silicon-containing film layer.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: November 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Yong Cao, Xianmin Tang, Srinivas Gandikota, Wei D. Wang, Zhendong Liu, Kevin Moraes, Muhammad M. Rasheed, Thanh X. Nguyen, Ananthkrishna Jupudi
  • Publication number: 20140251217
    Abstract: Embodiments of apparatus for physical vapor deposition are provided. In some embodiments, a target assembly for use in a substrate processing system to process a substrate includes a plate having a first side and an opposing second side, wherein the second side comprises a target supporting surface extending from the second side in a direction normal to the second side, wherein the target supporting surface has a first diameter and is bounded by a first edge; and a target having a first side bonded to the target supporting surface, wherein a diameter of the target is greater than the first diameter of the target supporting surface.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 11, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: THANH X. NGUYEN, YONG CAO, MUHAMMAD RASHEED, XIANMIN TANG
  • Publication number: 20140238843
    Abstract: A dual magnetron particularly useful for RF plasma sputtering includes a radially stationary open-loop magnetron comprising opposed magnetic poles and rotating about a central axis to scan an outer region of a sputter target and a radially movable open-loop magnetron comprising opposed magnetic poles and rotating together with the stationary magnetron. During processing, the movable magnetron is radially positioned in the outer region with an open end abutting an open end of the stationary magnetron to form a single open-loop magnetron. During cleaning, part of the movable magnetron is moved radially inwardly to scan and clean an inner region of the target not scanned by the stationary magnetron. The movable magnetron can be mounted on an arm pivoting about an axis at periphery of a rotating disk-shaped plate mounting the stationary magnetron so the arm centrifugally moves between radial positions dependent upon the rotation rate or direction.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 28, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Thanh X. Nguyen, Rongjun Wang, Muhammad M. Rasheed, Xianmin Tang
  • Publication number: 20140110248
    Abstract: According to embodiments provide a method for forming dielectric films using physical vapor deposition chamber. Particularly, a pasting process may be performed to apply a conductive coating over inner surfaces of the physical vapor deposition chamber. The pasting process may be performed under adjusted process parameters, such as increased spacing and/or increased chamber pressure. The adjusted parameters allow the conductive coating to be formed more efficiently and effectively.
    Type: Application
    Filed: September 25, 2013
    Publication date: April 24, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Yong CAO, Thanh X. NGUYEN, Muhammad M. RASHEED, Xianmin TANG
  • Publication number: 20140042016
    Abstract: Embodiments described herein provide a semiconductor device and methods and apparatuses of forming the same. The semiconductor device includes a substrate having a source and drain region and a gate electrode stack on the substrate between the source and drain regions. In one embodiment, the method includes positioning a substrate within a processing chamber, wherein the substrate includes a source and drain region, a gate dielectric layer between the source and drain regions, and a conductive film layer on the gate dielectric layer. The method also includes depositing a refractory metal nitride film layer on the conductive film layer, depositing a silicon-containing film layer on the refractory metal nitride film layer, and depositing a tungsten film layer on the silicon-containing film layer.
    Type: Application
    Filed: October 15, 2013
    Publication date: February 13, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Yong CAO, Xianmin TANG, Srinivas GANDIKOTA, Wei D. WANG, Zhendong LIU, Kevin MORAES, Muhammad M. RASHEED, Thanh X. NGUYEN, Ananthkrishna JUPUDI
  • Patent number: 8580094
    Abstract: Methods and apparatus to improve target life and deposition uniformity in PVD chambers are provided herein. In some embodiments, a magnetron assembly includes a shunt plate having a central axis, the shunt plate rotatable about the central axis, a first open loop magnetic pole arc coupled to the shunt plate at a first radius from the central axis, and a second open loop magnetic pole arc coupled the shunt plate at a first distance from the first open loop magnetic pole arc, wherein at least one of the first radius varies along the first open loop magnetic pole arc or the first distance varies along the second open loop magnetic pole arc. In some embodiments, a first polarity of the first open loop magnetic pole arc opposes a second polarity of the second open loop magnetic pole arc.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: November 12, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Rongjun Wang, Sally Lou, Muhammad Rasheed, Jianxin Lei, Xianmin Tang, Srinivas Gandikota, Ryan Hanson, Tza-Jing Gung, Keith A. Miller, Thanh X. Nguyen
  • Patent number: 8558299
    Abstract: Embodiments described herein provide a semiconductor device and methods and apparatuses of forming the same. The semiconductor device includes a substrate having a source and drain region and a gate electrode stack on the substrate between the source and drain regions. The gate electrode stack includes a conductive film layer on a gate dielectric layer, a refractory metal nitride film layer on the conductive film layer, a silicon-containing film layer on the refractory metal nitride film layer, and a tungsten film layer on the silicon-containing film layer. In one embodiment, the method includes positioning a substrate within a processing chamber, wherein the substrate includes a source and drain region, a gate dielectric layer between the source and drain regions, and a conductive film layer on the gate dielectric layer.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: October 15, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Yong Cao, Xianmin Tang, Srinivas Gandikota, Wei D. Wang, Zhendong Liu, Kevin Moraes, Muhammad M. Rasheed, Thanh X. Nguyen, Ananthkrishna Jupudi
  • Publication number: 20130256126
    Abstract: Apparatus for processing substrates are provided herein. In some embodiments, an apparatus for processing a substrate includes a substrate support that may include a dielectric member having a surface to support a substrate thereon; one or more first conductive members disposed below the dielectric member and having a dielectric member facing surface adjacent to the dielectric member; and a second conductive member disposed about and contacting the one or more first conductive members such that RF energy provided to the substrate by an RF source returns to the RF source by traveling radially outward from the substrate support along the dielectric member facing surface of the one or more first conductive members and along a first surface of the second conductive member disposed substantially parallel to a peripheral edge surface of the one or more first conductive members after travelling along the dielectric layer facing surface.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: ALAN RITCHIE, DONNY YOUNG, WEI W. WANG, ANANTHKRISHNA JUPUDI, THANH X. NGUYEN, KIRANKUMAR SAVANDAIAH
  • Publication number: 20120211354
    Abstract: Embodiments of the invention generally relate to a grounding kit for a semiconductor processing chamber, and a semiconductor processing chamber having a grounding kit. More specifically, embodiments described herein relate to a grounding kit which creates an asymmetric grounding path selected to significantly reduce the asymmetries caused by an off center RF power delivery.
    Type: Application
    Filed: February 3, 2012
    Publication date: August 23, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Muhammad M. Rasheed, Rongjun Wang, Thanh X. Nguyen, Alan A. Ritchie
  • Publication number: 20110311735
    Abstract: Methods and apparatus to improve target life and deposition uniformity in PVD chambers are provided herein. In some embodiments, a magnetron assembly includes a shunt plate having a central axis, the shunt plate rotatable about the central axis, a first open loop magnetic pole arc coupled to the shunt plate at a first radius from the central axis, and a second open loop magnetic pole arc coupled the shunt plate at a first distance from the first open loop magnetic pole arc, wherein at least one of the first radius varies along the first open loop magnetic pole arc or the first distance varies along the second open loop magnetic pole arc. In some embodiments, a first polarity of the first open loop magnetic pole arc opposes a second polarity of the second open loop magnetic pole arc.
    Type: Application
    Filed: June 20, 2011
    Publication date: December 22, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: RONGJUN WANG, SALLY LOU, MUHAMMAD RASHEED, JIANXIN LEI, XIANMIN TANG, SRINIVAS GANDIKOTA, RYAN HANSON, TZA-JING GUNG, KEITH A. MILLER, THANH X. NGUYEN
  • Publication number: 20110303960
    Abstract: Embodiments described herein provide a semiconductor device and methods and apparatuses of forming the same. The semiconductor device includes a substrate having a source and drain region and a gate electrode stack on the substrate between the source and drain regions. The gate electrode stack includes a conductive film layer on a gate dielectric layer, a refractory metal nitride film layer on the conductive film layer, a silicon-containing film layer on the refractory metal nitride film layer, and a tungsten film layer on the silicon-containing film layer. In one embodiment, the method includes positioning a substrate within a processing chamber, wherein the substrate includes a source and drain region, a gate dielectric layer between the source and drain regions, and a conductive film layer on the gate dielectric layer.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 15, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: YONG CAO, Xianmin Tang, Srinivas Gandikota, Wei D. Wang, Zhendong Liu, Kevin Moraes, Muhammad M. Rasheed, Thanh X. Nguyen, Ananthkrishna Jupudi
  • Patent number: 5675259
    Abstract: Method and apparatus for making measurements on fluids related to their complex permeability are disclosed. A microwave probe is provided for exposure to the fluids. The probe can be non-intrusive or can also be positioned at the location where measurements are to be made. The impedance of the probe is determined, in part, by the complex dielectric constant of the fluids at the probe. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids. Multiple probes may be selectively positioned to monitor the behavior of the fluids including their flow rate. Fluids may be identified as between two or more different fluids as well as multiple phases of the same fluid based on differences between their complex permittivities.
    Type: Grant
    Filed: September 14, 1995
    Date of Patent: October 7, 1997
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: G. Dickey Arndt, Thanh X. Nguyen, James R. Carl
  • Patent number: 5596150
    Abstract: Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
    Type: Grant
    Filed: March 8, 1995
    Date of Patent: January 21, 1997
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: G. Dickey Arndt, Thanh X. Nguyen, James R. Carl