Patents by Inventor Thayne M. Miller

Thayne M. Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190094955
    Abstract: Range finding methods and apparatus that may be implemented by VR/MR systems that include a head-mounted display (HMD) and an accessory that the user holds or wears. Range finding sensors (e.g., ultrasonic transducers) may be included on the HMD and on the accessory and used to track distances to and relative position of walls, objects, and other obstacles within constrained physical environments such as rooms, gyms, yards, or fields, or in unconstrained physical environments. Range finding information from the sensors on the HMD and accessory can be used to generate a 3D map of the user's environment that can be used for various purposes in the VR/MR system. In addition to mapping the user's environment, the range finding methods and apparatus may also be used to track the relative position of the accessory with respect to the HMD.
    Type: Application
    Filed: September 25, 2018
    Publication date: March 28, 2019
    Applicant: Apple Inc.
    Inventors: Wesley W. Zuber, Thayne M. Miller, Jae Hwang Lee
  • Publication number: 20180302881
    Abstract: An electronic device that provides situationally-aware alerts determines to provide an alert output (such as haptic, audio, visual, and so on) via an output device, determines a movement pattern based on one or more signals from one or more sensors indicating information relating at least to movement of the electronic device, and adjusts the alert output to account for the movement pattern. In some implementations, the electronic device may adjust the alert output by delaying the alert output. In other implementations, the electronic device may adjust the alert output by altering the alert output to be discernible despite the movement pattern based on a cadence of the movement pattern. In still other implementations, the electronic device may determine to provide the alert output in response to receiving an incoming communication and may adjust the alert output differently based on a priority associated with the incoming communication.
    Type: Application
    Filed: June 22, 2018
    Publication date: October 18, 2018
    Inventors: Thayne M. Miller, Hung A. Pham, John B. Morrell, Brian T. Gleeson
  • Patent number: 10039080
    Abstract: An electronic device that provides situationally-aware alerts determines to provide an alert output (such as haptic, audio, visual, and so on) via an output device, determines a movement pattern based on one or more signals from one or more sensors indicating information relating at least to movement of the electronic device, and adjusts the alert output to account for the movement pattern. In some implementations, the electronic device may adjust the alert output by delaying the alert output. In other implementations, the electronic device may adjust the alert output by altering the alert output to be discernible despite the movement pattern based on a cadence of the movement pattern. In still other implementations, the electronic device may determine to provide the alert output in response to receiving an incoming communication and may adjust the alert output differently based on a priority associated with the incoming communication.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: July 31, 2018
    Assignee: Apple Inc.
    Inventors: Thayne M. Miller, Hung A. Pham, John B. Morrell, Brian T. Gleeson
  • Publication number: 20170311282
    Abstract: An electronic device that provides situationally-aware alerts determines to provide an alert output (such as haptic, audio, visual, and so on) via an output device, determines a movement pattern based on one or more signals from one or more sensors indicating information relating at least to movement of the electronic device, and adjusts the alert output to account for the movement pattern. In some implementations, the electronic device may adjust the alert output by delaying the alert output. In other implementations, the electronic device may adjust the alert output by altering the alert output to be discernible despite the movement pattern based on a cadence of the movement pattern. In still other implementations, the electronic device may determine to provide the alert output in response to receiving an incoming communication and may adjust the alert output differently based on a priority associated with the incoming communication.
    Type: Application
    Filed: July 3, 2017
    Publication date: October 26, 2017
    Inventors: Thayne M. Miller, Hung A. Pham, John B. Morrell, Brian T. Gleeson
  • Publication number: 20170257844
    Abstract: An electronic device that provides situationally-aware alerts determines to provide an alert output (such as haptic, audio, visual, and so on) via an output device, determines a movement pattern based on one or more signals from one or more sensors indicating information relating at least to movement of the electronic device, and adjusts the alert output to account for the movement pattern. In some implementations, the electronic device may adjust the alert output by delaying the alert output. In other implementations, the electronic device may adjust the alert output by altering the alert output to be discernible despite the movement pattern based on a cadence of the movement pattern. In still other implementations, the electronic device may determine to provide the alert output in response to receiving an incoming communication and may adjust the alert output differently based on a priority associated with the incoming communication.
    Type: Application
    Filed: August 30, 2016
    Publication date: September 7, 2017
    Inventors: Thayne M. Miller, Hung A. Pham, John B. Morrell, Brian T. Gleeson
  • Publication number: 20170235403
    Abstract: Input members with capacitive sensors are disclosed. In one embodiment of an electronic button, a first circuit is configured to capture a fingerprint of a user's finger placed on the electronic button, and a second circuit is configured to sense a force applied to the electronic button by the user's finger. The first circuit is further configured to provide temperature information to compensate for temperature sensitivities of the second circuit, and the second circuit is further configured to provide force information to the first circuit.
    Type: Application
    Filed: May 2, 2017
    Publication date: August 17, 2017
    Inventors: Thayne M. Miller, Jean-Marie Bussat, Steven P. Hotelling, Sawyer I. Cohen, Tyler B. Cater
  • Patent number: 9671889
    Abstract: Input members with capacitive sensors are disclosed. In one embodiment of an electronic button, a first circuit is configured to capture a fingerprint of a user's finger placed on the electronic button, and a second circuit is configured to sense a force applied to the electronic button by the user's finger. The first circuit is further configured to provide temperature information to compensate for temperature sensitivities of the second circuit, and the second circuit is further configured to provide force information to the first circuit.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: June 6, 2017
    Assignee: Apple Inc.
    Inventors: Thayne M. Miller, Jean-Marie Bussat, Steven P. Hotelling, Sawyer I. Cohen, Tyler B. Cater
  • Patent number: 9600113
    Abstract: Flexible circuits for routing signals of a device, such as a touch sensor panel of a touch sensitive device, are provided. The flexible circuit can include a first set of traces for routing a first set of lines and a second set of traces for routing a second set of lines. The first set of traces can couple together the ends of at least a portion of the first set of lines. Additionally, the first set of traces can be non-intersecting or non-overlapping with the second set of traces. The flexible circuit can have a T-shape configuration and can be incorporated within a touch sensitive device, display device, printed circuit board, or the like. The flexible circuit can be placed over another flexible circuit, and can extend onto the device.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: March 21, 2017
    Assignee: Apple Inc.
    Inventors: Steven P. Hotelling, Joshua G. Wurzel, Steven J. Martisauskas, Thayne M. Miller, Kuo-Hua Sung
  • Patent number: 9588643
    Abstract: An electronic device may include a touch-sensitive display and sensor circuitry that detects whether a user's right hand or left hand is being used to operate the touch-sensitive display. Control circuitry may arrange icons and virtual buttons on the touch-sensitive display based on which hand is being used to provide touch input to the touch-sensitive display. For example, when the sensor circuitry detects a user operating the electronic device with his or her left hand, the control circuitry may position icons and virtual buttons closer to the left edge of the touch-sensitive display so that the icons and virtual buttons are easier to reach with the user's left hand. The sensor circuitry may include one or more touch sensors, proximity sensors, fingerprint sensors, motion sensors, or other suitable sensors capable of gathering information about which hand is being used to operate the electronic device.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: March 7, 2017
    Assignee: Apple Inc.
    Inventor: Thayne M. Miller
  • Publication number: 20160179338
    Abstract: An electronic device may include a touch-sensitive display and sensor circuitry that detects whether a user's right hand or left hand is being used to operate the touch-sensitive display. Control circuitry may arrange icons and virtual buttons on the touch-sensitive display based on which hand is being used to provide touch input to the touch-sensitive display. For example, when the sensor circuitry detects a user operating the electronic device with his or her left hand, the control circuitry may position icons and virtual buttons closer to the left edge of the touch-sensitive display so that the icons and virtual buttons are easier to reach with the user's left hand. The sensor circuitry may include one or more touch sensors, proximity sensors, fingerprint sensors, motion sensors, or other suitable sensors capable of gathering information about which hand is being used to operate the electronic device.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 23, 2016
    Inventor: Thayne M. Miller
  • Publication number: 20160077647
    Abstract: Flexible circuits for routing signals of a device, such as a touch sensor panel of a touch sensitive device, are provided. The flexible circuit can include a first set of traces for routing a first set of lines and a second set of traces for routing a second set of lines. The first set of traces can couple together the ends of at least a portion of the first set of lines. Additionally, the first set of traces can be non-intersecting or non-overlapping with the second set of traces. The flexible circuit can have a T-shape configuration and can be incorporated within a touch sensitive device, display device, printed circuit board, or the like. The flexible circuit can be placed over another flexible circuit, and can extend onto the device.
    Type: Application
    Filed: November 25, 2015
    Publication date: March 17, 2016
    Inventors: Steven P. HOTELLING, Joshua G. WURZEL, Steven J. MARTISAUSKAS, Thayne M. MILLER, Kuo-Hua SUNG
  • Patent number: 9201461
    Abstract: Flexible circuits for routing signals of a device, such as a touch sensor panel of a touch sensitive device, are provided. The flexible circuit can include a first set of traces for routing a first set of lines and a second set of traces for routing a second set of lines. The first set of traces can couple together the ends of at least a portion of the first set of lines. Additionally, the first set of traces can be non-intersecting or non-overlapping with the second set of traces. The flexible circuit can have a T-shape configuration and can be incorporated within a touch sensitive device, display device, printed circuit board, or the like. The flexible circuit can be placed over another flexible circuit, and can extend onto the device.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: December 1, 2015
    Assignee: Apple Inc.
    Inventors: Steven P. Hotelling, Joshua G. Wurzel, Steven J. Martisauskas, Thayne M. Miller, Kuo-Hua Sung
  • Publication number: 20140192276
    Abstract: Flexible circuits for routing signals of a device, such as a touch sensor panel of a touch sensitive device, are provided. The flexible circuit can include a first set of traces for routing a first set of lines and a second set of traces for routing a second set of lines. The first set of traces can couple together the ends of at least a portion of the first set of lines. Additionally, the first set of traces can be non-intersecting or non-overlapping with the second set of traces. The flexible circuit can have a T-shape configuration and can be incorporated within a touch sensitive device, display device, printed circuit board, or the like. The flexible circuit can be placed over another flexible circuit, and can extend onto the device.
    Type: Application
    Filed: March 11, 2014
    Publication date: July 10, 2014
    Applicant: Apple Inc.
    Inventors: Steven P. HOTELLING, Joshua G. Wurzel, Steven J. Martisauskas, Thayne M. Miller, Kuo-Hua Sung
  • Patent number: 8711570
    Abstract: Flexible circuits for routing signals of a device, such as a touch sensor panel of a touch sensitive device, are provided. The flexible circuit can include a first set of traces for routing a first set of lines and a second set of traces for routing a second set of lines. The first set of traces can couple together the ends of at least a portion of the first set of lines. Additionally, the first set of traces can be non-intersecting or non-overlapping with the second set of traces. The flexible circuit can have a T-shape configuration and can be incorporated within a touch sensitive device, display device, printed circuit board, or the like. The flexible circuit can be placed over another flexible circuit, and can extend onto the device.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: April 29, 2014
    Assignee: Apple Inc.
    Inventors: Steven Porter Hotelling, Joshua G. Wurzel, Steven J. Martisauskas, Thayne M. Miller, Kuo-Hua Sung
  • Patent number: 8573984
    Abstract: Touch sensor panels can use touch sensors to detect the presence and location of a touch event. In order for the touch sensors to function reliably, the back plane of the touch sensor panel should be grounded. Supplying this ground connection can provide a uniform electrical reference point from which changes in voltage and capacitance due to a touch event can be measured. Without this ground connection, touch sensors may misrepresent the touch event. Various embodiments of the present disclosure provide different means for providing a ground connection for the back plane of a touch sensor panel. These embodiments are designed to provide a reliable ground connection even in the presence of various failure conditions.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: November 5, 2013
    Assignee: Apple Inc.
    Inventor: Thayne M. Miller
  • Publication number: 20120326990
    Abstract: Flexible circuits for routing signals of a device, such as a touch sensor panel of a touch sensitive device, are provided. The flexible circuit can include a first set of traces for routing a first set of lines and a second set of traces for routing a second set of lines. The first set of traces can couple together the ends of at least a portion of the first set of lines. Additionally, the first set of traces can be non-intersecting or non-overlapping with the second set of traces. The flexible circuit can have a T-shape configuration and can be incorporated within a touch sensitive device, display device, printed circuit board, or the like. The flexible circuit can be placed over another flexible circuit, and can extend onto the device.
    Type: Application
    Filed: June 21, 2011
    Publication date: December 27, 2012
    Inventors: Joshua G. Wurzel, Steven J. Martisauskas, Thayne M. Miller, Steven Porter Hotelling, Kuo-Hua Sung
  • Patent number: 8337216
    Abstract: Touch sensor panels can use touch sensors to detect the presence and location of a touch event. In order for the touch sensors to function reliably, the back plane of the touch sensor panel should be grounded. Supplying this ground connection can provide a uniform electrical reference point from which changes in voltage and capacitance due to a touch event can be measured. Without this ground connection, touch sensors may misrepresent the touch event. Various embodiments of the present disclosure provide different means for providing a ground connection for the back plane of a touch sensor panel. These embodiments are designed to provide a reliable ground connection even in the presence of various failure conditions.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: December 25, 2012
    Assignee: Apple Inc.
    Inventor: Thayne M. Miller