Patents by Inventor The-Tu Chau

The-Tu Chau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10546750
    Abstract: Systems and methods for substrate wafer back side and edge cross section seals. In accordance with a first method embodiment, a silicon wafer of a first conductivity type is accessed. An epitaxial layer of the first conductivity type is grown on a front surface of the silicon wafer. The epitaxial layer is implanted to form a region of an opposite conductivity type. The growing and implanting are repeated to form a vertical column of the opposite conductivity type. The wafer may also be implanted to form a region of the opposite conductivity type vertically aligned with the vertical column.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: January 28, 2020
    Assignee: Vishay-Siliconix
    Inventors: Hamilton Lu, The-Tu Chau, Kyle Terrill, Deva N. Pattanayak, Sharon Shi, Kuo-In Chen, Robert Xu
  • Patent number: 9887266
    Abstract: Ultra-low drain-source resistance power MOSFET. In accordance with an embodiment of the preset invention, a semiconductor device comprises a plurality of trench power MOSFETs. The plurality of trench power MOSFETs is formed in a second epitaxial layer. The second epitaxial layer is formed adjacent and contiguous to a first epitaxial layer. The first epitaxial layer is formed adjacent and contiguous to a substrate highly doped with red Phosphorus. The novel red Phosphorus doped substrate enables a desirable low drain-source resistance.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: February 6, 2018
    Assignee: Vishay-Siliconix
    Inventors: The-Tu Chau, Sharon Shi, Qufei Chen, Martin Hernandez, Deva Pattanayak, Kyle Terrill, Kuo-In Chen
  • Patent number: 9685524
    Abstract: Systems and methods for narrow semiconductor trench structures. In a first method embodiment, a method for forming a narrow trench comprises forming a first layer of insulating material on a substrate and creating a trench through the first layer of insulating material and into the substrate. A second insulating material is formed on the first layer and on exposed portions of the trench and the second insulating material is removed from the first layer of insulating material and the bottom of the trench. The trench is filled with an epitaxial material and the first layer of insulating material is removed. A narrow trench is formed by the removal of remaining portions of the second insulating material.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: June 20, 2017
    Assignee: VISHAY-SILICONIX
    Inventors: The-Tu Chau, Hoang Le, Kuo-In Chen
  • Patent number: 9443974
    Abstract: Methods of fabricating a super junction trench power MOSFET (metal oxide semiconductor field effect transistor) device are described. A column of p-type dopant in the super junction is separated from a first column of n-type dopant by a first column of oxide and from a second column of n-type dopant by a second column of oxide. In an n-channel device, a gate element for the FET is advantageously situated over the column of p-type dopant; and in a p-channel device, a gate element for the FET is advantageously situated over the column of n-type dopant.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: September 13, 2016
    Assignee: Vishay-Siliconix
    Inventors: Yang Gao, Kyle Terrill, Deva Pattanayak, Kuo-In Chen, The-Tu Chau, Sharon Shi, Qufei Chen
  • Patent number: 9437424
    Abstract: High mobility P-channel power metal oxide semiconductor field effect transistors. In accordance with an embodiment of the present invention, a power MOSFET is fabricated such that the holes flow in an inversion/accumulation channel, which is along the (110) crystalline plane, or equivalents, and the current flow is in the [110] direction, or equivalents, when a negative potential is applied to the gate with respect to the source. The enhanced channel mobility of holes leads to a reduction of the channel portion of the on-state resistance, thereby advantageously reducing total “on”resistance of the device.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: September 6, 2016
    Assignee: Vishay-Siliconix
    Inventors: Deva Pattanayak, Kuo-In Chen, The-Tu Chau
  • Patent number: 9425306
    Abstract: In a super junction trench power MOSFET (metal oxide semiconductor field effect transistor) device, a column of p-type dopant in the super junction is separated from a first column of n-type dopant by a first column of oxide and from a second column of n-type dopant by a second column of oxide. In an n-channel device, a gate element for the FET is advantageously situated over the column of p-type dopant; and in a p-channel device, a gate element for the FET is advantageously situated over the column of n-type dopant.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: August 23, 2016
    Assignee: Vishay-Siliconix
    Inventors: Yang Gao, Kyle Terrill, Deva Pattanayak, Kuo-In Chen, The-Tu Chau, Sharon Shi, Qufei Chen
  • Patent number: 9425043
    Abstract: High mobility P-channel power metal oxide semiconductor field effect transistors. In accordance with an embodiment of the present invention, a power MOSFET is fabricated such that the holes flow in an inversion/accumulation channel, which is along the (110) crystalline plane, or equivalents, and the current flow is in the [110] direction, or equivalents, when a negative potential is applied to the gate with respect to the source. The enhanced channel mobility of holes leads to a reduction of the channel portion of the on-state resistance, thereby advantageously reducing total “on” resistance of the device.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: August 23, 2016
    Assignee: Vishay-Siliconix
    Inventors: Deva Pattanayak, Kuo-In Chen, The-Tu Chau
  • Patent number: 9412833
    Abstract: Systems and methods for narrow semiconductor trench structures. In a first method embodiment, a method for forming a narrow trench comprises forming a first layer of insulating material on a substrate and creating a trench through the first layer of insulating material and into the substrate. A second insulating material is formed on the first layer and on exposed portions of the trench and the second insulating material is removed from the first layer of insulating material and the bottom of the trench. The trench is filled with an epitaxial material and the first layer of insulating material is removed. A narrow trench is formed by the removal of remaining portions of the second insulating material.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: August 9, 2016
    Assignee: Vishay-Siliconix
    Inventors: The-Tu Chau, Hoang Le, Kuo-In Chen
  • Publication number: 20160225622
    Abstract: Systems and methods for substrate wafer back side and edge cross section seals. In accordance with a first method embodiment, a silicon wafer of a first conductivity type is accessed. An epitaxial layer of the first conductivity type is grown on a front surface of the silicon wafer. The epitaxial layer is implanted to form a region of an opposite conductivity type. The growing and implanting are repeated to form a vertical column of the opposite conductivity type. The wafer may also be implanted to form a region of the opposite conductivity type vertically aligned with the vertical column.
    Type: Application
    Filed: January 5, 2016
    Publication date: August 4, 2016
    Applicant: Vishay-Siliconix
    Inventors: Hamilton LU, The-Tu CHAU, Kyle TERRILL, Deva N. PATTANAYAK, Sharon SHI, Kuo-In CHEN, Robert XU
  • Patent number: 9230810
    Abstract: Systems and methods for substrate wafer back side and edge cross section seals. In accordance with a first method embodiment, a silicon wafer of a first conductivity type is accessed. An epitaxial layer of the first conductivity type is grown on a front surface of the silicon wafer. The epitaxial layer is implanted to form a region of an opposite conductivity type. The growing and implanting are repeated to form a vertical column of the opposite conductivity type. The wafer may also be implanted to form a region of the opposite conductivity type vertically aligned with the vertical column.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: January 5, 2016
    Assignee: Vishay-Siliconix
    Inventors: Hamilton Lu, The-Tu Chau, Kyle Terrill, Deva N. Pattanayak, Sharon Shi, Kuo-In Chen, Robert Xu
  • Patent number: 8409954
    Abstract: Ultra-low drain-source resistance power MOSFET. In accordance with an embodiment of the preset invention, a semiconductor device comprises a plurality of trench power MOSFETs. The plurality of trench power MOSFETs is formed in a second epitaxial layer. The second epitaxial layer is formed adjacent and contiguous to a first epitaxial layer. The first epitaxial layer is formed adjacent and contiguous to a substrate highly doped with red Phosphorous. The novel red Phosphorous doped substrate enables a desirable low drain-source resistance.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: April 2, 2013
    Assignee: Vishay-Silconix
    Inventors: The-Tu Chau, Sharon Shi, Qufei Chen, Martin Hernandez, Deva Pattanayak, Kyle Terrill, Kuo-In Chen
  • Publication number: 20110053326
    Abstract: Methods of fabricating a super junction trench power MOSFET (metal oxide semiconductor field effect transistor) device are described. A column of p-type dopant in the super junction is separated from a first column of n-type dopant by a first column of oxide and from a second column of n-type dopant by a second column of oxide. In an n-channel device, a gate element for the FET is advantageously situated over the column of p-type dopant; and in a p-channel device, a gate element for the FET is advantageously situated over the column of n-type dopant.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 3, 2011
    Applicant: VISHAY-SILICONIX
    Inventors: Yang Gao, Kyle Terrill, Deva Pattanayak, Kuo-In Chen, The-Tu Chau, Sharon Shi, Qufei Chen
  • Publication number: 20110049614
    Abstract: In a super junction trench power MOSFET (metal oxide semiconductor field effect transistor) device, a column of p-type dopant in the super junction is separated from a first column of n-type dopant by a first column of oxide and from a second column of n-type dopant by a second column of oxide. In an n-channel device, a gate element for the FET is advantageously situated over the column of p-type dopant; and in a p-channel device, a gate element for the FET is advantageously situated over the column of n-type dopant.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 3, 2011
    Applicant: VISHAY-SILICONIX
    Inventors: Yang Gao, Kyle Terrill, Deva Pattanayak, Kuo-In Chen, The-Tu Chau, Sharon Shi, Qufei Chen
  • Publication number: 20110049682
    Abstract: Systems and methods for substrate wafer back side and edge cross section seals. In accordance with a first method embodiment, a silicon wafer of a first conductivity type is accessed. An epitaxial layer of the first conductivity type is grown on a front surface of the silicon wafer. The epitaxial layer is implanted to form a region of an opposite conductivity type. The growing and implanting are repeated to form a vertical column of the opposite conductivity type. The wafer may also be implanted to form a region of the opposite conductivity type vertically aligned with the vertical column.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 3, 2011
    Applicant: VISHAY-SILICONIX
    Inventors: Hamilton Lu, The-Tu Chau, Kyle Terrill, Deva N. Pattanayak, Sharon Shi, Kuo-In Chen, Robert Xu
  • Publication number: 20090104751
    Abstract: Systems and methods for narrow semiconductor trench structures. In a first method embodiment, a method for forming a narrow trench comprises forming a first layer of insulating material on a substrate and creating a trench through the first layer of insulating material and into the substrate. A second insulating material is formed on the first layer and on exposed portions of the trench and the second insulating material is removed from the first layer of insulating material and the bottom of the trench. The trench is filled with an epitaxial material and the first layer of insulating material is removed. A narrow trench is formed by the removal of remaining portions of the second insulating material.
    Type: Application
    Filed: February 13, 2008
    Publication date: April 23, 2009
    Applicant: Vishay-Siliconix
    Inventors: The-Tu Chau, Hoang Le, Kuo-In Chen
  • Publication number: 20080220571
    Abstract: High mobility P-channel power metal oxide semiconductor field effect transistors. In accordance with an embodiment of the present invention, a power MOSFET is fabricated such that the holes flow in an inversion/accumulation channel, which is along the (110) crystalline plane, or equivalents, and the current flow is in the [110] direction, or equivalents, when a negative potential is applied to the gate with respect to the source. The enhanced channel mobility of holes leads to a reduction of the channel portion of the on-state resistance, thereby advantageously reducing total “on” resistance of the device.
    Type: Application
    Filed: May 20, 2008
    Publication date: September 11, 2008
    Applicant: VISHAY-SILICONIX
    Inventors: Deva Pattanayak, Kuo-In Chen, The-Tu Chau
  • Publication number: 20080157281
    Abstract: Ultra-low drain-source resistance power MOSFET. In accordance with an embodiment of the preset invention, a semiconductor device comprises a plurality of trench power MOSFETs. The plurality of trench power MOSFETs is formed in a second epitaxial layer. The second epitaxial layer is formed adjacent and contiguous to a first epitaxial layer. The first epitaxial layer is formed adjacent and contiguous to a substrate highly doped with red Phosphorus. The novel red Phosphorus doped substrate enables a desirable low drain-source resistance.
    Type: Application
    Filed: February 11, 2008
    Publication date: July 3, 2008
    Inventors: The-Tu Chau, Sharon Shi, Qufei Chen, Martin Hernandez, Deva Pattanayak, Kyle Terrill, Kuo-In Chen
  • Publication number: 20070262360
    Abstract: High mobility P-channel power metal oxide semiconductor field effect transistors. In accordance with an embodiment of the present invention, a power MOSFET is fabricated such that the holes flow in an inversion/accumulation channel, which is along the (110) crystalline plane, or equivalents, and the current flow is in the [110] direction, or equivalents, when a negative potential is applied to the gate with respect to the source. The enhanced channel mobility of holes leads to a reduction of the channel portion of the on-state resistance, thereby advantageously reducing total “on” resistance of the device.
    Type: Application
    Filed: December 22, 2006
    Publication date: November 15, 2007
    Inventors: Deva Pattanayak, Kuo-In Chen, The-Tu Chau
  • Publication number: 20070221989
    Abstract: Ultra-low drain-source resistance power MOSFET. In accordance with an embodiment of the preset invention, a semiconductor device comprises a plurality of trench power MOSFETs. The plurality of trench power MOSFETs is formed in a second epitaxial layer. The second epitaxial layer is formed adjacent and contiguous to a first epitaxial layer. The first epitaxial layer is formed adjacent and contiguous to a substrate highly doped with red Phosphorous. The novel red Phosphorous doped substrate enables a desirable low drain-source resistance.
    Type: Application
    Filed: March 21, 2006
    Publication date: September 27, 2007
    Inventors: The-Tu Chau, Sharon Shi, Qufei Chen, Martin Hernandez, Deva Pattarayak, Kyle Terrill, Kuo-In Chen
  • Publication number: 20070048966
    Abstract: Systems and methods for narrow semiconductor trench structures. In a first method embodiment, a method for forming a narrow trench comprises forming a first layer of insulating material on a substrate and creating a trench through the first layer of insulating material and into the substrate. A second insulating material is formed on the first layer and on exposed portions of the trench and the second insulating material is removed from the first layer of insulating material and the bottom of the trench. The trench is filled with an epitaxial material and the first layer of insulating material is removed. A narrow trench is formed by the removal of remaining portions of the second insulating material.
    Type: Application
    Filed: March 9, 2006
    Publication date: March 1, 2007
    Inventors: The-Tu Chau, Hoang Le, Kuo-In Chen