Patents by Inventor Theresa Chang
Theresa Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250090567Abstract: Described herein are compositions comprising RNA origami (RNAOG) which include 5-fluorouracil (5FU) or analogues thereof are described which can be used to both directly treat a cancer by inhibiting a biochemical pathway overexpressed in a cancer cell and indirectly treat a cancer by inducing an anti-cancer immune response. Also described herein are methods of using said compositions for treating cancer, inducing an anti-cancer immune response, and/or killing a cancer cell.Type: ApplicationFiled: January 10, 2023Publication date: March 20, 2025Inventors: Hao YAN, Yang XU, Xiaodong QI, Guangbao YAO, Chen GONG, Yung CHANG, Theresa YIP
-
Publication number: 20240409711Abstract: A multi-component filament including: (a) a first component comprising a first polymer, the first component extending longitudinally along a length of the multi-component filament; and (b) a second component comprising a second polymer, copper-containing particles dispersed throughout the second polymer, and copper-containing ions disposed throughout the second polymer, the second component extending longitudinally along the length of the multi-component filament. The second polymer can be one or more of polyethyleneimine, a nylon, an aramid precursor polymer, polyetherimide, a polyamide-imide, polystyrene, poly(methyl methacrylate), polyimide, melamine resin, urea-formaldehyde, polyacrylonitrile, a copolyimide, an amide-containing polymer, a pyrrole-containing polymer, or an indole-containing polymer.Type: ApplicationFiled: September 16, 2022Publication date: December 12, 2024Inventors: Theresa Chang, William Keith Fisher
-
Publication number: 20240376344Abstract: A method of manufacturing an article includes depositing a solution on a glass, glass-ceramic, or ceramic substrate, the solution having a polyhedral oligomeric silsesquioxane with the formula (RSiO3/2)n, where R is a hydrogen or an organic moiety; curing the solution to form an anti-reflective coating; and plasma treating the anti-reflective coating to form defects in the anti-reflective coating. An article includes a glass, glass-ceramic, or ceramic substrate having a primary surface; a plasma-treated anti-reflective coating disposed over the primary surface that has at least one layer, the at least one layer having a polyhedral oligomeric silsesquioxane with the formula (RSiO3/2)n, where R is a hydrogen or an organic moiety; and an easy-to-clean (ETC) coating disposed over the plasma-treated anti-reflective coating, the ETC coating having a fluorinated material and a physical thickness of about 1 nm to about 20 nm.Type: ApplicationFiled: October 7, 2022Publication date: November 14, 2024Inventors: Theresa Chang, Albert Joseph Fahey, Ying Wei, Shu Yuan
-
Patent number: 12063933Abstract: Biocidal compositions including a carrier, a copper(I) salt, and a copper-assisting additive different from the carrier are provided, which in some aspects have improved antimicrobial efficacy and/or total color difference. Also provided are biocidal compositions or UV curable films thereof that exhibit high transmittance that is similar to the transmittance of an otherwise identical composition or film thereof without either the copper(I) salt or the copper-assisting additive. Also provided are biocidal additive formulations in which a copper(I) salt has a molarity of at least 20 mM.Type: GrantFiled: July 20, 2023Date of Patent: August 20, 2024Assignee: CORNING INCORPORATEDInventors: Theresa Chang, Johnathan David Jr. Culpepper, Huayun Deng, Shu Yuan
-
Publication number: 20240270941Abstract: A method of forming an antimicrobial film, including providing a substrate with a polymer coating disposed thereon, the polymer coating including: an antimicrobial material, an inner surface contacting the substrate, and an outer surface opposite the inner surface; and extracting ions from the antimicrobial material toward the outer surface, such that the outer surface interacts with surface microorganisms. A composition, including a polymer; an antimicrobial material; and at least one of an organic solvent and an additive. The antimicrobial material comprises at least one of copper-containing glass particles, copper oxide particles, copper metal particles, copper salts, copper coordination complexes, cuprite crystals, and a combination thereof. Further, the additive can be selected to increase the oxidation resistance of the antimicrobial material.Type: ApplicationFiled: April 23, 2024Publication date: August 15, 2024Inventors: Andrew Charles Antony, Theresa Chang, Sushmit Sunil Kumar Goyal, Shrisudersan Jayaraman, Rui Qi, Vinalia Tjong, Shu Yuan
-
Publication number: 20240225956Abstract: A glass container for storing pharmaceutical formulations may include a glass body formed from a Type IA or Type IB glass composition according to ASTM Standard E438-92(2011). The glass body may include a wall portion with an inner surface and an outer surface, a heel portion and a floor portion, wherein the inner surface of the glass container is formed by the inner surface of the glass body. The glass body may include at least a class A2 base resistance or better according to ISO 695, at least a type HGB2 hydrolytic resistance or better according to ISO 719 and Type 1 chemical durability according to USP <660>. The glass container does not comprise a boron-rich layer on the inner surface of the glass body in as formed condition.Type: ApplicationFiled: March 21, 2024Publication date: July 11, 2024Applicant: Corning IncorporatedInventors: Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren, Dana Craig Bookbinder
-
Publication number: 20240197566Abstract: A coated glass package comprising a glass body having a Type 1 chemical durability according to USP 660, at least a class A2 base resistance or better according to ISO 695, and at least a type HGB2 hydrolytic resistance or better according to ISO 719. A lubricous coating having a thickness of ?100 microns may be positioned on at least a portion of the exterior surface of the glass body. The portion of the coated glass package with the lubricous coating comprises a coefficient of friction that is at least 20% less than an uncoated glass package and the coefficient of friction does not increase by more than 30% after undergoing a depyrogenation cycle. A horizontal compression strength of the coated glass package is at least 10% greater than an uncoated glass package and the horizontal compression strength is not reduced by more than 20% after undergoing the depyrogenation cycle.Type: ApplicationFiled: February 27, 2024Publication date: June 20, 2024Applicant: CORNING INCORPORATEDInventors: Dana Craig Bookbinder, Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren
-
Publication number: 20240191099Abstract: Coated articles are described herein that include a surface-modifying layer that is fluorine-free. In aspects, the surface-modifying layer comprises a partial silica-like network having a ratio of Si—O—Si bonds to Si atoms in the anti-fingerprint coating from about 2 to about 3. Additionally or alternatively, the surface-modifying layer further comprises an alkyl silane at the exterior surface and bonded to a Si—O group in the silica-like network. Methods include evaporating a functionalized polyhedral oligomeric silsesquioxane onto a first major surface. Methods include impinging an ion beam on the first major surface. Alternatively, methods include disposing and heating a solution comprising a polysilazane or a polyhedral oligomeric silsesquioxane on a first major surface. In aspects, methods include reacting material at the first major surface with a alkyl silane.Type: ApplicationFiled: December 5, 2023Publication date: June 13, 2024Inventors: Kaveh Adib, Robert Alan Bellman, Philip Simon Brown, Theresa Chang, Christine Marie Mahoney Fahey, Dean Joseph Mastropietro, James Joseph Price, Shu Yuan
-
Patent number: 12006221Abstract: A method of forming a functionalized device substrate is provided that includes the steps of: forming a conductive layer on a growth substrate; applying a polymeric layer to a device substrate, wherein a coupling agent couples the polymeric layer to the device substrate; coupling the polymeric layer to the conductive layer on the growth substrate; and peeling the growth substrate from the conductive layer.Type: GrantFiled: December 9, 2021Date of Patent: June 11, 2024Assignee: Corning IncorporatedInventors: Therese Francoise Arliguie, Theresa Chang, Miriam Marchena Martin-Francés, Prantik Mazumder, Valerio Pruneri, Frederic Christian Wagner
-
Publication number: 20240173891Abstract: A method of plugging channels of a honeycomb body and a honeycomb body including plugged channels. The method includes applying a shear force to a plugging mixture including a plurality of inorganic particles, clay, and a liquid vehicle to alter the viscosity of the plugging mixture from a first viscosity prior to the vibrating to a second viscosity which is less than the first viscosity. A honeycomb body is placed into contact with the plugging mixture such that a portion of the plugging mixture having the second viscosity flows into the plurality of channels. Application of the shear force is stopped or reduced to increase the viscosity of the portion of the plugging mixture in the plurality of channels to greater than the first viscosity.Type: ApplicationFiled: January 31, 2024Publication date: May 30, 2024Inventors: Keith Norman Bubb, Theresa Chang, Joseph Henry Citriniti, Kevin Eugene Elliott, Xinyuan Liu, Robert John Locker, Prashanth Abraham Vanniamparambil, Kevin Lee Wasson, Shu Yuan
-
Patent number: 11993692Abstract: A method of forming an antimicrobial film, including providing a substrate with a polymer coating disposed thereon, the polymer coating including: an antimicrobial material, an inner surface contacting the substrate, and an outer surface opposite the inner surface; and extracting ions from the antimicrobial material toward the outer surface, such that the outer surface interacts with surface microorganisms. A composition, including a polymer; an antimicrobial material; and at least one of an organic solvent and an additive. The antimicrobial material comprises at least one of copper-containing glass particles, copper oxide particles, copper metal particles, copper salts, copper coordination complexes, cuprite crystals, and a combination thereof. Further, the additive can be selected to increase the oxidation resistance of the antimicrobial material.Type: GrantFiled: July 6, 2023Date of Patent: May 28, 2024Assignee: CORNING INCORPORATEDInventors: Andrew Charles Antony, Theresa Chang, Sushmit Sunil Kumar Goyal, Shrisudersan Jayaraman, Rui Qi, Vinalia Tjong, Shu Yuan
-
Patent number: 11963927Abstract: A glass container for storing pharmaceutical formulations may include a glass body formed from a Type IA or Type IB glass composition according to ASTM Standard E438-92(2011). The glass body may include a wall portion with an inner surface and an outer surface, a heel portion and a floor portion, wherein the inner surface of the glass container is formed by the inner surface of the glass body. The glass body may include at least a class A2 base resistance or better according to ISO 695, at least a type HGB2 hydrolytic resistance or better according to ISO 719 and Type 1 chemical durability according to USP <660>. The glass container does not comprise a boron-rich layer on the inner surface of the glass body in as formed condition.Type: GrantFiled: August 18, 2020Date of Patent: April 23, 2024Assignee: Corning IncorporatedInventors: Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren, Dana Craig Bookbinder
-
Patent number: 11951072Abstract: A coated glass pharmaceutical package includes a glass body having a Type 1 chemical durability according to USP 660, at least a class A2 base resistance or better according to ISO 695, and at least a type HGB2 hydrolytic resistance or better according to ISO 719, the glass body having an interior surface and an exterior surface and a wall extending therebetween. A lubricous coating having a thickness of less than or equal to 90 nm may be positioned on at least a portion of the exterior surface of the glass body but not on any portion of the interior surface. The portion of the coated glass package with the lubricous coating comprises a coefficient of friction that is at least 20% less than an uncoated glass package and the coefficient of friction does not increase by more than 30% after undergoing a depyrogenation cycle including exposure to a temperature of 250° C. for a time period of 30 minutes.Type: GrantFiled: October 15, 2019Date of Patent: April 9, 2024Assignee: Corning IncorporatedInventors: Dana Craig Bookbinder, Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren
-
Patent number: 11939259Abstract: Embodiments of the present disclosure are directed to coated glass articles which reduce glass particle formation caused by glass to glass contact in pharmaceutical glass filling lines.Type: GrantFiled: July 9, 2020Date of Patent: March 26, 2024Assignee: Corning IncorporatedInventors: John Frederick Bayne, Dana Craig Bookbinder, Theresa Chang, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Kyle Christopher Hoff, Jamie Lynne Morley, Santona Pal, John Stephen Peanasky, Chandan Kumar Saha, Christopher Lee Timmons
-
Publication number: 20240091103Abstract: According to embodiments, a coated pharmaceutical container may include a pharmaceutical container comprising an interior surface and an exterior surface, wherein the pharmaceutical container may include a glass composition that has Class HGA1 hydrolytic resistance when tested according to the ISO 720 testing standard. The coated pharmaceutical container may further include a coating bonded to at least a portion of the exterior surface but not on any portion of the interior surface. The coating may have a coefficient of friction less than or equal to 0.7, and the coated pharmaceutical container may be thermally stable after heating at a temperature of at least 260° C. for a time period of 30 minutes.Type: ApplicationFiled: November 30, 2023Publication date: March 21, 2024Applicant: CORNING INCORPORATEDInventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
-
Patent number: 11919194Abstract: A method of plugging channels of a honeycomb body and a honeycomb body including plugged channels. The method includes applying a shear force to a plugging mixture including a plurality of inorganic particles, clay, and a liquid vehicle to alter the viscosity of the plugging mixture from a first viscosity prior to the vibrating to a second viscosity which is less than the first viscosity. A honeycomb body is placed into contact with the plugging mixture such that a portion of the plugging mixture having the second viscosity flows into the plurality of channels. Application of the shear force is stopped or reduced to increase the viscosity of the portion of the plugging mixture in the plurality of channels to greater than the first viscosity.Type: GrantFiled: January 29, 2021Date of Patent: March 5, 2024Assignee: Corning IncorporatedInventors: Keith Norman Bubb, Theresa Chang, Joseph Henry Citriniti, Kevin Eugene Elliott, Xinyuan Liu, Robert John Locker, Prashanth Abraham Vanniamparambil, Kevin Lee Wasson, Shu Yuan
-
Patent number: 11872189Abstract: According to embodiments, a method of making a coated pharmaceutical container, may include: forming a glass tube; forming the glass tube into a pharmaceutical container comprising an interior surface and an exterior surface; and applying a coating to the exterior surface. The coating has a coefficient of friction less than or equal to 0.7 relative to a second pharmaceutical container when tested in a vial-on-vial testing jig under a normal load of 30 N. The coated pharmaceutical container may be thermally stable after depyrogenation at a temperature of at least 260° C. for 30 minutes in air.Type: GrantFiled: May 8, 2020Date of Patent: January 16, 2024Assignee: Corning IncorporatedInventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
-
Publication number: 20230405974Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.Type: ApplicationFiled: August 3, 2023Publication date: December 21, 2023Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
-
Publication number: 20230365462Abstract: An article and method of manufacturing an article is provided. The article includes a glass, glass-ceramic, or ceramic substrate having a primary surface with an anti-reflective coating disposed over the primary surface. An intermediate coating containing a cured polysilazane or a cured silsesquioxane material is disposed over the anti-reflective coating. An easy-to-clean (ETC) coating containing a polymer and/or fluorinated material is disposed directly on the intermediate coating. The method of manufacturing the article includes curing an intermediate coating solution containing a polysilazane or a silsesquioxane to form an intermediate coating at a temperature of about 300° C. or less.Type: ApplicationFiled: September 10, 2021Publication date: November 16, 2023Inventors: Kaveh Adib, Robert Alan Bellman, Philip Simon Brown, Theresa Chang, Ying Wei, Shu Yuan
-
Publication number: 20230365907Abstract: A cell culture substrate is provided that includes a substrate lattice having an ordered array of fibers and pores disposed between the fibers. The ordered array of fibers includes a cell culture surface to support adherent or semi-adherent cells during cell culture. The cell culture substrate further includes a positive charge coating disposed on the cell culture surface to promote adhesion of cells to the cell culture surface.Type: ApplicationFiled: October 7, 2021Publication date: November 16, 2023Inventors: Theresa Chang, Paula Jean Dolley-Sonneville, Paul Ernest Gagnon, Jr., Vinalia Tjong, Yue Zhou