Patents by Inventor Thierry Baron

Thierry Baron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230360912
    Abstract: A method for producing nanostructures having a metal oxide shell, carried by a top face of a substrate whose greatest dimension is greater than or equal to 100 mm by MOCVD metalorganic chemical vapour deposition, including successive steps carried out in a reactor configured for MOCVD deposition of nucleation and growth. The nucleation step includes forming non-contiguous metal nuclei by depositing a metal by MOCVD using a metalorganic precursor on the top face of the substrate and oxidising the metal of the metal nuclei, to form oxidised nuclei and ensure stabilisation of the nuclei. The growth step includes depositing a metal by MOCVD using the metalorganic precursor, to form non-contiguous nanostructures by growth of the oxidised nanostructures, and oxidising the deposited metal of the nanostructures formed in the nucleation to form oxidised nanostructures.
    Type: Application
    Filed: November 26, 2020
    Publication date: November 9, 2023
    Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE GRENOBLE ALPES, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON, UNIVERSITE CLAUDE BERNARD LYON 1, ECOLE CENTRALE DE LYON, ECOLE SUPERIEURE CHIMIE PHYSIQUE ELECTRONIQUE LYON
    Inventors: Pierre-Vincent GUENERY, Thierry BARON, Jeremy MOEYAERT
  • Publication number: 20230290633
    Abstract: A method for producing, on a structure based on a material III-V, of a dielectric layer, the method comprising producing a first dielectric film by ALD by carrying out a plurality of first cycles, each comprising at least: one injection in the reaction chamber of a precursor based on a first material and one injection in the reaction chamber of a water or ozone-based precursor; and producing, on the first dielectric film, a second dielectric film by plasma-enhanced ALD by carrying out a plurality of second cycles, each comprising at least: one injection in the reaction chamber of a precursor based on a second material and one injection in the reaction chamber of an oxygen or nitrogen based precursor.
    Type: Application
    Filed: July 8, 2021
    Publication date: September 14, 2023
    Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE GRENOBLE ALPES
    Inventors: Maxime LEGALLAIS, Bassem SALEM, Thierry BARON, Romain GWOZIECKI, Marc PLISSONNIER
  • Patent number: 11756787
    Abstract: A process for the hetero-integration of a semiconductor material of interest on a silicon substrate, includes a step of structuring the substrate which comprises a step of producing a growth mask on the surface of the silicon substrate, the growth mask comprising a plurality of masking patterns, two masking patterns being separated by a trench wherein the silicon substrate is exposed; a step of forming a two-dimensional buffer layer made of a 2D material, the buffer layer being free of side bonds on its free surface and being formed selectively on at least one silicon plane of [111] orientation in at least one trench, the step of forming a buffer layer being performed after the structuring step; a step of forming at least one layer of a semiconductor material of interest on the buffer layer. The semiconductor material of interest is preferably a IV-IV, III-V, II-VI semiconductor material and/or a 2D semiconductor material.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: September 12, 2023
    Assignees: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE GRENOBLE ALPES
    Inventors: Mickaël Martin, Thierry Baron, Virginie Loup
  • Publication number: 20230111123
    Abstract: A method for producing an aluminium nitride (AlN)-based layer on a structure with the basis of silicon (Si) or with the basis of a III-V material, may include several deposition cycles performed in a plasma reactor comprising a reaction chamber inside which is disposed a substrate having the structure. Each deposition cycle may include at least the following: deposition of aluminium-based species on an exposed surface of the structure, the deposition including at least one injection into the reaction chamber of an aluminium (Al)-based precursor; and nitridation of the exposed surface of the structure, the nitridation including at least one injection into the reaction chamber of a nitrogen (N)-based precursor and the formation in the reaction chamber of a nitrogen-based plasma. During the formation of the nitrogen-based plasma, a non-zero polarisation voltage Vbias_substrate may be applied to the substrate.
    Type: Application
    Filed: February 25, 2021
    Publication date: April 13, 2023
    Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE GRENOBLE ALPES
    Inventors: Maxime LEGALLAIS, Bassem SALEM, Thierry BARON, Romain GWOZIECKI, Marc PLISSONNIER
  • Patent number: 11342180
    Abstract: A process for epitaxying GaSe on a [111]-oriented silicon substrate, includes a step of selecting a [111]-oriented silicon substrate resulting from cutting a silicon bar in a miscut direction which is one of the three [11-2] crystallographic directions, the miscut angle (?) being smaller than or equal to 0.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: May 24, 2022
    Assignees: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE GRENOBLE ALPES
    Inventors: Mickaël Martin, Thierry Baron
  • Publication number: 20210111022
    Abstract: A process for the hetero-integration of a semiconductor material of interest on a silicon substrate, includes a step of structuring the substrate which comprises a step of producing a growth mask on the surface of the silicon substrate, the growth mask comprising a plurality of masking patterns, two masking patterns being separated by a trench wherein the silicon substrate is exposed; a step of forming a two-dimensional buffer layer made of a 2D material, the buffer layer being free of side bonds on its free surface and being formed selectively on at least one silicon plane of [111] orientation in at least one trench, the step of forming a buffer layer being performed after the structuring step; a step of forming at least one layer of a semiconductor material of interest on the buffer layer. The semiconductor material of interest is preferably a IV-IV, III-V, II-VI semiconductor material and/or a 2D semiconductor material.
    Type: Application
    Filed: October 12, 2020
    Publication date: April 15, 2021
    Inventors: Mickaël MARTIN, Thierry BARON, Virginie LOUP
  • Publication number: 20210111023
    Abstract: A process for epitaxying GaSe on a [111]-oriented silicon substrate, includes a step of selecting a [111]-oriented silicon substrate resulting from cutting a silicon bar in a miscut direction which is one of the three [11-2] crystallographic directions, the miscut angle (?) being smaller than or equal to 0.
    Type: Application
    Filed: October 5, 2020
    Publication date: April 15, 2021
    Inventors: Mickaël MARTIN, Thierry BARON
  • Patent number: 10692718
    Abstract: A method for producing a network of nanostructures from at least one semiconductor material, including a step of forming nanostructures on the surface of a substrate, at least a part of the nanostructures having areas of contact between each other, comprising, in sequence and after the step of forming: a step of deoxidising the surface of the nanostructures and a step of reinforcing the bond between the nanostructures at the contact areas.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: June 23, 2020
    Assignees: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, CNRS Centre National de la Recherche Scientifique, INSTITUT POLYTECHNIQUE DE GRENOBLE
    Inventors: Pauline Serre, Thierry Baron, Celine Ternon
  • Publication number: 20180261454
    Abstract: A semiconductor device is disclosed that has a semiconductor substrate having a crystal structure with a <1,0,0> plane and a <1,1,0> plane and a surface that forms an angle of about 0.3 degrees to about 0.7 degrees with the <1,0,0> plane in the direction of the <1,1,0> plane; and a compound semiconductor layer formed on the semiconductor substrate. The compound semiconductor layer is free of antiphase boundaries, and has a thickness between about 200 nm and about 1,000 nm.
    Type: Application
    Filed: June 27, 2016
    Publication date: September 13, 2018
    Inventors: Xinyu BAO, Zhiyuan YE, Jean-Baptiste PIN, Errol SANCHEZ, Franck BASSANI, Thierry BARON, Yann BOGUMILOWICZ, Jean-Michel HARTMANN
  • Patent number: 9917153
    Abstract: A crystalline layer is produced from a crystalline substrate made from a first material on which a masking layer has previously been deposited; the masking layer containing at least one trench forming an access to the substrate, by: forming a crystalline buffer layer situated at least partly in the trench in the masking layer, extending from the substrate and forming a projection beyond the masking layer so that an upper part of the lateral flanks of said buffer layer is left uncovered, the formation step comprising a growth of the buffer layer from the substrate, and forming a crystalline epitaxial layer in a second material, different from the material of the buffer layer, by growth from said upper part of the lateral flanks of the buffer layer left uncovered.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: March 13, 2018
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Emmanuel Augendre, Thierry Baron
  • Publication number: 20170004968
    Abstract: A semiconductor device is disclosed that has a semiconductor substrate having a crystal structure with a <1,0,0> plane and a <1,1,0> plane and a surface that forms an angle of about 0.3 degrees to about 0.7 degrees with the <1,0,0> plane in the direction of the <1,1,0> plane; and a compound semiconductor layer formed on the semiconductor substrate. The compound semiconductor layer is free of antiphase boundaries, and has a thickness between about 200 nm and about 1,000 nm.
    Type: Application
    Filed: June 27, 2016
    Publication date: January 5, 2017
    Inventors: Xinyu BAO, Zhiyuan YE, Jean-Baptiste PIN, Errol SANCHEZ, Franck BASSANI, Thierry BARON, Yann BOGUMILOWICZ, Jean-Michel HARTMANN
  • Patent number: 9377684
    Abstract: A material (M) includes a substrate one of the surfaces of which is covered with a layer based on a block copolymer having a block (B) consisting of a polysaccharide and to its uses for electronics, in order to prepare organic electroluminescent diodes (OLEDs) or organic photovoltaic cells (OPV) or for designing detection devices (nanobiosensors, biochips).
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: June 28, 2016
    Assignee: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (C.N.R.S)
    Inventors: Karim Aissou, Sami Halila, Sebastien Fort, Redouane Borsali, Thierry Baron
  • Publication number: 20160148807
    Abstract: A method for producing a network of nanostructures from at least one semiconductor material, including a step of forming nanostructures on the surface of a substrate, at least a part of the nanostructures having areas of contact between each other, comprising, in sequence and after the step of forming: a step of deoxidising the surface of the nanostructures and a step of reinforcing the bond between the nanostructures at the contact areas.
    Type: Application
    Filed: November 24, 2015
    Publication date: May 26, 2016
    Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, CNRS Centre National de la Recherche Scientifique, INSTITUT POLYTECHNIQUE DE GRENOBLE
    Inventors: Pauline SERRE, Thierry BARON, Celine TERNON
  • Patent number: 9293322
    Abstract: A method for fabricating patterns of III-V semiconductor material on a semiconductor substrate based on oriented silicon or germanium comprises: production of a growth mask on the surface of the substrate, defining masking patterns Miox of width L, of height hox with a distance S between masking patterns; growth of patterns MiIII-V of III-V material between said masking patterns, such that said patterns exhibit a height h relative to the top plane of said masking patterns, said height h being at or above a critical minimum height hc, the growth step comprising: determining growth rates v100 and v110 at right angles to the face of the III-V material, defining ratio R=v100/v110; determining the angle of dislocations ? of the III-V material relative to the plane of the substrate; determining the critical minimum height hc by the equation: h c = h ox - S × tan ? ( ? ) tan ? ( ? ) R - 1 with R being determined to be greater than tan(?).
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: March 22, 2016
    Assignees: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Thierry Baron, Franck Bassani
  • Publication number: 20150380491
    Abstract: A crystalline layer is produced from a crystalline substrate made from a first material on which a masking layer has previously been deposited; the masking layer containing at least one trench forming an access to the substrate, by: forming a crystalline buffer layer situated at least partly in the trench in the masking layer, extending from the substrate and forming a projection beyond the masking layer so that an upper part of the lateral flanks of said buffer layer is left uncovered, the formation step comprising a growth of the buffer layer from the substrate, and forming a crystalline epitaxial layer in a second material, different from the material of the buffer layer, by growth from said upper part of the lateral flanks of the buffer layer left uncovered.
    Type: Application
    Filed: June 29, 2015
    Publication date: December 31, 2015
    Applicant: Commissariat A L'Energie Atomique et aux Energies Alternatives
    Inventors: Emmanuel AUGENDRE, Thierry Baron
  • Publication number: 20150079766
    Abstract: A method for fabricating patterns of III-V semiconductor material on a semiconductor substrate based on oriented silicon or germanium comprises: production of a growth mask on the surface of the substrate, defining masking patterns Miox of width L, of height hox with a distance S between masking patterns; growth of patterns MiIII-V of III-V material between said masking patterns, such that said patterns exhibit a height h relative to the top plane of said masking patterns, said height h being at or above a critical minimum height hc, the growth step comprising: determining growth rates v100 and v110 at right angles to the face of the III-V material, defining ratio R=v100/v110; determining the angle of dislocations ? of the III-V material relative to the plane of the substrate; determining the critical minimum height hc by the equation: h c = h ox - S × tan ? ( ? ) tan ? ( ? ) R - 1 with R being determined to be greater than tan(?).
    Type: Application
    Filed: September 11, 2014
    Publication date: March 19, 2015
    Inventors: Thierry BARON, Franck BASSANI
  • Patent number: 8940623
    Abstract: A process for obtaining an array of nanodots (212) for microelectronic devices, characterized in that it comprises the following steps: deposition of a silicon layer (210) on a substrate (100, 132), formation, above the silicon layer (210), of a layer (240) of a material capable of self-organizing, in which at least one polymer substantially forms cylinders (242) organized into an array within a matrix (244), formation of patterns (243) in the layer (240) of a material capable of self-organizing by elimination of the said cylinders (242), formation of a hard mask (312) by transfer of the said patterns (243), production of silicon dots (212) in the silicon layer (210) by engraving through the hard mask (312), silicidation of the silicon dots (212), comprising deposition of a metal layer (510).
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: January 27, 2015
    Assignees: Commissariat a l'Energie Atomique et aux Energies Alternatives, CNRS-Centre National de la Recherche Scientifique, Universite Joseph Fourier
    Inventors: Guillaume Gay, Thierry Baron, Eric Jalaguier
  • Patent number: 8685819
    Abstract: A method for making a crossbar array of crossed conductive or semi-conductive access lines on a substrate, the crossbar array including on a crossbar array insulator, in a plane parallel to the substrate, a first level of lines including a plurality of first lines parallel with each other made of a conductive or semi-conductive material; on the first level of lines, a second level of lines including a plurality of second lines parallel with each other made of a conductive or semi-conductive material, the second lines being substantially perpendicular to the first lines. The method includes forming, on the substrate, a first cavity of substantially rectangular shape; forming a second cavity of substantially rectangular shape superimposed to the first cavity, the first and second cavities intersecting each other perpendicularly so as to form a resultant cavity.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: April 1, 2014
    Assignees: Commissariat a l'Energie Atomique, Centre National de la Recherche Scientifique, Universite Joseph Fourier
    Inventors: Julien Buckley, Karim Aissou, Thierry Baron, Gabriel Molas
  • Publication number: 20130313525
    Abstract: The transistor (100) comprises a nanowire (101) at least partially forming a channel of the transistor (100), a source contact (102) arranged at a first longitudinal end (103) of the nanowire (101), a drain contact (104) arranged at a second longitudinal end (105) of the nanowire (101), and a gate (106) arranged on the nanowire (101) between the source contact (102) and the drain contact (104). Furthermore, a portion of the gate (106) covers, with the interposition of a dielectric material (107), a corresponding portion of the source contact (102) and/or of the drain contact (104) arranged along the nanowire (101) between its two longitudinal ends (103, 105).
    Type: Application
    Filed: May 24, 2013
    Publication date: November 28, 2013
    Inventors: Guillaume Rosaz, Pascal Gentile, Thierry Baron, Bassem Salem, Nicolas Pauc
  • Patent number: 8535962
    Abstract: A process of making a microelectronic light-emitting device, including: a) growth on a metallic support of multiple wires based on one or more semi-conducting materials designed to emit radiant light, and b) formation of at least one electrical conducting zone of contact on at least one of the wires.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: September 17, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Philippe Gilet, Pierre Ferret, Pascal Gentile, Alexei Tchelnokov, Thierry Baron