Patents by Inventor Thomas A. Buckley

Thomas A. Buckley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040206631
    Abstract: A metal plating bath containing organic compounds that inhibit or retard the consumption of plating bath additives. The additives are chemical compounds that improve the brightness of the plated metal, the physical properties of the plated metal especially with respect to ductility and the micro-throwing power as well as the macro-throwing power of the plating bath. The organic compounds that inhibit or retard the consumption of additives increases the life of the plating bath and improves the efficiency of the plating process. The plating baths containing the organic compounds that inhibit or retard additive consumption can be employed to copper, gold, silver, palladium, platinum, cobalt, cadmium, chromium, bismuth, indium, rhodium, ruthenium, and iridium.
    Type: Application
    Filed: October 2, 2001
    Publication date: October 21, 2004
    Applicant: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Patent number: 6773573
    Abstract: A metal plating bath containing alcohol compounds that inhibit or retard the consumption of plating bath additives. The additives are chemical compounds that improve the brightness of the plated metal, the physical properties of the plated metal especially with respect to ductility and the micro-throwing power as well as the macro-throwing power of the plating bath. The alcohol compounds that inhibit or retard the consumption of additives increases the life of the plating bath and improves the efficiency of the plating process. The plating baths containing the alcohol compounds that inhibit or retard additive consumption can be employed to plate copper, gold, silver, palladium, platinum, cobalt, cadmium, chromium, bismuth, indium, rhodium, ruthenium, and iridium.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: August 10, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: David R. Gabe, Andrew J. Cobley, Leon R. Barstad, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Thomas Buckley
  • Publication number: 20040104124
    Abstract: A metal plating bath and method of plating a metal on a substrate where the metal plating bath contains heteroatom organic compounds that prevent or inhibit the consumption of metal plating bath additives. The metal plating bath additives improve the brightness of plated metal as well as ductility, micro-throwing power and micro-throwing power of the plating bath. The addition of the additive consumption inhibiting heteroatom organic compounds improves the physical properties of the plated metal as well as the efficiency of the plating process. The heteroatom organic compounds may contain sulfur, oxygen or nitrogen heteroatoms.
    Type: Application
    Filed: November 24, 2003
    Publication date: June 3, 2004
    Applicant: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Patent number: 6736954
    Abstract: A metal plating bath and method of plating a metal on a substrate where the metal plating bath contains heteroatom organic compounds that prevent or inhibit the consumption of metal plating bath additives. The metal plating bath additives improve the brightness of plated metal as well as the ductility, micro-throwing power and macro-throwing power of the plating bath. The addition of the additive consumption inhibiting heteroatom organic compounds improves the physical properties of the plated metal as well as the efficiency of the plating process. The heteroatom organic compounds may contain sulfur, oxygen or nitrogen heteroatoms.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: May 18, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Publication number: 20040084412
    Abstract: A substantially oxygen-free and nitrogen-free plasma ashing process for removing photoresist in the presence of a low k material from a semiconductor substrate includes forming reactive species by exposing a plasma gas composition to an energy source to form plasma. The plasma gas composition is substantially free from oxygen-bearing and nitrogen-bearing gases. The plasma selectively removes the photoresist from the underlying substrate containing low k material by exposing the photoresist to substantially oxygen and nitrogen free reactive species. The process can be used with carbon containing low k dielectric materials.
    Type: Application
    Filed: August 11, 2003
    Publication date: May 6, 2004
    Inventors: Carlo Waldfried, Orlando Escorcia, Qingyuan Han, Thomas Buckley, Palani Sakthivel
  • Publication number: 20040074778
    Abstract: A metal plating bath and metal plating process that contains aldehyde compounds that prevent or reduce the consumption of metal plating bath additives. The metal plating baths provide for an efficient plating method because the plating process need not be interrupted to replenish the plating bath with additives. The metal plating baths may be employed to plate metals such as copper, gold, silver, palladium, platinum, cobalt, chromium, cadmium, bismuth, indium, rhodium, iridium, and ruthenium.
    Type: Application
    Filed: October 10, 2003
    Publication date: April 22, 2004
    Applicant: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Patent number: 6652731
    Abstract: A metal plating bath and metal plating process that contains aldehyde compounds that prevent or reduce the consumption of metal plating bath additives. The metal plating baths provide for an efficient plating method because the plating process need not be interrupted to replenish the plating bath with additives. The Metal plating baths may be employed to plate metals such as copper, gold, silver, palladium, cobalt, chromium, cadmium, bismuth, indium, rhodium, iridium, and ruthenium.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: November 25, 2003
    Assignee: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Patent number: 6593095
    Abstract: The present invention relates to toxins that specifically bind to GPI anchored proteins. More specifically, the present invention encompasses the uses of such toxins to detect the presence or absence of GPI anchored proteins. In one embodiment the present invention can be used to detect the presence of paroxysmal nocturnal hemoglobinuria.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: July 15, 2003
    Assignees: University of Victoria Innovation and Development Corporation, Johns Hopkins University
    Inventors: J. Thomas Buckley, Robert A. Brodsky
  • Publication number: 20030102226
    Abstract: A metal plating bath containing alcohol compounds that inhibit or retard the consumption of plating bath additives. The additives are chemical compounds that improve the brightness of the plated metal, the physical properties of the plated metal especially with respect to ductility and the micro-throwing power as well as the macro-throwing power of the plating bath. The alcohol compounds that inhibit or retard the consumption of additives increases the life of the plating bath and improves the efficiency of the plating process. The plating baths containing the alcohol compounds that inhibit or retard additive consumption can be employed to plate copper, gold, silver, palladium, platinum, cobalt, cadmium, chromium, bismuth, indium, rhodium, ruthenium, and iridium.
    Type: Application
    Filed: October 2, 2001
    Publication date: June 5, 2003
    Applicant: Shipley Company, L.L.C.
    Inventors: David R. Gabe, Andrew J. Cobley, Leon R. Barstad, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Thomas Buckley
  • Publication number: 20030085132
    Abstract: A metal plating bath and metal plating process that contains aldehyde compounds that prevent or reduce the consumption of metal plating bath additives. The metal plating baths provide for an efficient plating method because the plating process need not be interrupted to replenish the plating bath with additives. The Metal plating baths may be employed to plate metals such as copper, gold, silver, palladium, cobalt, chromium, cadmium, bismuth, indium, rhodium, iridium, and ruthenium.
    Type: Application
    Filed: October 2, 2001
    Publication date: May 8, 2003
    Applicant: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Publication number: 20030070934
    Abstract: A metal plating bath and method of plating a metal on a substrate where the metal plating bath contains heteroatom compounds that prevent or inhibit the consumption of metal plating bath additives. The metal plating bath additives improve the brightness of plated metal as well as the ductility, micro-throwing power and macro-throwing power of the plating bath. The addition of the additive consumption inhibiting heteroatom organic compounds improves the physical properties of the plated metal as well as the efficiency of the plating process. The heteroatom organic compounds may contain sulfur, oxygen or nitrogen heteroatoms.
    Type: Application
    Filed: October 2, 2001
    Publication date: April 17, 2003
    Applicant: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Publication number: 20030066756
    Abstract: A metal plating bath and method for plating a metal on a substrate. The metal plating bath contains hydroxylamines that inhibit the consumption of additive bath components to improve the efficiency of metal plating processes. The additive bath components are added to metal plating baths to improve brightness of plated metal as well as the micro-throwing and macro-throwing power of the bath. In addition to brighteners, the additive bath components may include levelers, suppressors, hardeners, and the like. The hydroxylamines that inhibit additive consumption may be employed in metal plating baths for plating copper, gold, silver, platinum, palladium, cobalt, cadmium, nickel, bismuth, indium, tin, rhodium, iridium, ruthenium and alloys thereof.
    Type: Application
    Filed: October 4, 2001
    Publication date: April 10, 2003
    Applicant: Shipley Company, L.L.C.
    Inventors: David R. Gabe, Andrew J. Cobley, Leon R. Barstad, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Thomas Buckley
  • Patent number: 6495315
    Abstract: The infectivity of a population of enveloped viruses which comprise a glycosylphosphatidylinositol-anchored protein in their membrane can be reduced by employing certain toxins such as aerolysin, alpha toxin of Clostridium septicum, or enterolobin. Toxins which bind to glycosylphosphatidylinositol-anchored proteins inactivate such viruses. The toxins can be used to produce attenuated viral vaccines, to purge blood products, cells, or tissues of such viruses, and to detect viruses in samples.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: December 17, 2002
    Assignee: The Johns Hopkins University
    Inventors: James E. K. Hildreth, Dzung H. Nguyen, James Thomas Buckley
  • Publication number: 20020012671
    Abstract: The infectivity of a population of enveloped viruses which comprise a glycosylphosphatidylinositol-anchored protein in their membrane can be reduced by employing certain toxins such as aerolysin, alpha toxin of Clostridium septicum, or enterolobin. Toxins which bind to glycosylphosphatidylinositol-anchored proteins inactivate such viruses. The toxins can be used to produce attenuated viral vaccines, to purge blood products, cells, or tissues of such viruses, and to detect viruses in samples.
    Type: Application
    Filed: January 12, 2001
    Publication date: January 31, 2002
    Inventors: James E.K. Hildreth, Dzung H. Nguyen, James Thomas Buckley
  • Patent number: 6120515
    Abstract: An athetectomy catheter is disclosed having a composite cutter which is capable of cutting material, including hardened plaque, from a biological conduit. The composite cutter has a cutter and a sensor mount. The cutter has a proximal end and a distal end with a cutting edge. The proximal end of the cutter bonds with the sensor mount. The sensor mount is adaptable for holding a sensor and attaching to a cutter torque cable of an atherectomy catheter. Typically, the atherectomy catheter has a cutter housing with a window. The composite cutter is positioned in the cutter housing and moves in response to movement of the cutter torque cable to cut material from the biological conduit via the window.
    Type: Grant
    Filed: July 16, 1997
    Date of Patent: September 19, 2000
    Assignee: Devices for Vascular Intervention, Inc.
    Inventors: Larry Rogers, John Thomas Buckley, Ron Ray Hundertmark, Ferolyn T. Powell, Charles Milo, Anthony J. Castro
  • Patent number: 5798218
    Abstract: Aerolysin is shown to bind specifically to the Thy-1 antigen. Aerolysin-based methods, compositions and kits for detecting the presence of Thy-1 antigen are presented.
    Type: Grant
    Filed: September 24, 1996
    Date of Patent: August 25, 1998
    Assignee: University of British Columbia Innovation and Development Corporation
    Inventor: James Thomas Buckley
  • Patent number: 5733296
    Abstract: An athetectomy catheter is disclosed having a composite cutter which is capable of cutting material, including hardened plaque, from a biological conduit. The composite cutter has a cutter and a sensor mount. The cutter has a proximal end and a distal end with a cutting edge. The proximal end of the cutter bonds with the sensor mount. The sensor mount is adaptable for holding a sensor and attaching to a cutter torque cable of an atherectomy catheter. Typically, the atherectomy catheter has a cutter housing with a window. The composite cutter is positioned in the cutter housing and moves in response to movement of the cutter torque cable to cut material from the biological conduit via the window.
    Type: Grant
    Filed: February 6, 1996
    Date of Patent: March 31, 1998
    Assignee: Devices for Vascular Intervention
    Inventors: Larry Rogers, John Thomas Buckley, Ron Ray Hundertmark, Ferolyn T. Powell, Charles Milo, Anthony J. Castro
  • Patent number: D455996
    Type: Grant
    Filed: April 17, 2001
    Date of Patent: April 23, 2002
    Assignee: Caterpillar Inc.
    Inventor: Thomas A. Buckley