Patent number: 7396685
Abstract: The present invention discloses eleven reduced dimensionality (RD) triple resonance nuclear magnetic resonance (NMR) experiments for measuring chemical shift values of certain nuclei in a protein molecule, where the chemical shift values encoded in a peak pair of an NMR spectrum are detected in a phase sensitive manner. The RD 3D HA,CA,(CO),N,HN NMR and RD 3D H,C,(C-TOCSY-CO),N,HN NMR experiments are designed to yield “sequential” connectivities, while the RD 3D H?/?,C?/?,CO,HA NMR and RD 3D H?/?,C?/?,N,HN NMR experiments provide “intraresidue” connectivities. The RD 3D H,C,C,H-COSY NMR, RD 3D H,C,C,H-TOCSY NMR, and RD 2D H,C,H-COSY NMR experiments allow one to obtain assignments for aliphatic and aromatic side chain chemical shifts, while the RD 2D HB,CB,(CG,CD),HD NMR experiment provide information for the aromatic side chain chemical shifts.
Type:
Grant
Filed:
July 28, 2003
Date of Patent:
July 8, 2008
Assignee:
The Research Foundation of State University of New York
Inventors:
Thomas A. Szyperski, Seho Kim
Publication number: 20040095140
Abstract: The present invention discloses eleven reduced dimensionality (RD) triple resonance nuclear magnetic resonance (NMR) experiments for measuring chemical shift values of certain nuclei in a protein molecule, where the chemical shift values encoded in a peak pair of an NMR spectrum are detected in a phase sensitive manner. The RD 3D HA,CA,(CO),N,HN NMR and RD 3D H,C,(C-TOCSY-CO),N,HN NMR experiments are designed to yield “sequential” connectivities, while the RD 3D H&agr;/&bgr;,C&agr;/&bgr;,CO,HA NMR and RD 3D H&agr;/&bgr;,C&agr;/&bgr;,N,HN NMR experiments provide “intraresidue” connectivities. The RD 3D H,C,C,H-COSY NMR, RD 3D H,C,C,H-TOCSY NMR, and RD 2D H,C,C,H-COSY NMR experiments allow one to obtain assignments for aliphatic and aromatic side chain chemical shifts, while the RD 2D HB,CB,(CG,CD),HD NMR experiment provide information for the aromatic side chain chemical shifts.
Type:
Application
Filed:
July 28, 2003
Publication date:
May 20, 2004
Inventors:
Thomas A. Szyperski, Seho Kim