Patents by Inventor Thomas A. Wassick

Thomas A. Wassick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11043468
    Abstract: A method and structure for joining a semiconductor device and a laminate substrate or two laminate substrates where the joint is formed with lead free solders and lead free compositions. The various lead free solders and lead free compositions are chosen so that there is a sufficient difference in liquidus temperatures such that some components may be joined to, or removed from, the laminate substrate without disturbing other components on the laminate substrate.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: June 22, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles L. Arvin, Clement J. Fortin, Christopher D. Muzzy, Thomas A. Wassick
  • Patent number: 10985129
    Abstract: Multiple integrated circuit (IC) devices are connected to a top side metallization surface of a multi IC device carrier. The carrier includes resin based substrate layers and associated wiring line layers. To reduce stain of the resin layers, especially in region(s) within the carrier between the IC devices, a stiffener or stiffeners are applied to the back side metallization (BSM) surface of the IC device carrier. The stiffener(s) reduce the amount of curvature of the IC device carrier and reduce the strain seen by the resin layer(s), thereby mitigating the risk for cracks forming and expanding within the resin layers.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: April 20, 2021
    Assignee: International Business Machines Corporation
    Inventors: Thomas E. Lombardi, Steve Ostrander, Krishna R. Tunga, Thomas A. Wassick
  • Patent number: 10833025
    Abstract: A semiconductor device that includes a substrate having integrated circuits; a plurality of metallization layers on the substrate, the plurality of metallization layers having a peripheral region adjacent to a kerf region of the semiconductor device and containing a crack stop structure extending through the plurality of metallization layers; a trench extending through the plurality of metallization layers and adjacent to the crack stop structure, the trench filled with a material that creates compressive stresses between the filled trench and the adjacent metallization layers to form a compressive zone adjacent to the crack stop structure. Also disclosed is a method for forming the semiconductor device.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: November 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kirk D. Peterson, Thomas A. Wassick, Nicolas Pizzuti, Thomas M. Shaw
  • Publication number: 20200328177
    Abstract: Multiple integrated circuit (IC) devices are connected to a top side metallization surface of a multi IC device carrier. The carrier includes resin based substrate layers and associated wiring line layers. To reduce stain of the resin layers, especially in region(s) within the carrier between the IC devices, a stiffener or stiffeners are applied to the back side metallization (BSM) surface of the IC device carrier. The stiffener(s) reduce the amount of curvature of the IC device carrier and reduce the strain seen by the resin layer(s), thereby mitigating the risk for cracks forming and expanding within the resin layers.
    Type: Application
    Filed: April 15, 2019
    Publication date: October 15, 2020
    Inventors: Thomas E. Lombardi, Steve Ostrander, Krishna R. Tunga, Thomas A. Wassick
  • Publication number: 20200312788
    Abstract: A semiconductor device that includes a substrate having integrated circuits; a plurality of metallization layers on the substrate, the plurality of metallization layers having a peripheral region adjacent to a kerf region of the semiconductor device and containing a crack stop structure extending through the plurality of metallization layers; a trench extending through the plurality of metallization layers and adjacent to the crack stop structure, the trench filled with a material that creates compressive stresses between the filled trench and the adjacent metallization layers to form a compressive zone adjacent to the crack stop structure. Also disclosed is a method for forming the semiconductor device.
    Type: Application
    Filed: April 1, 2019
    Publication date: October 1, 2020
    Inventors: Kirk D. Peterson, Thomas A. Wassick, Nicolas Pizzuti, Thomas M. Shaw
  • Publication number: 20200161272
    Abstract: A method and structure for joining a semiconductor device and a laminate substrate or two laminate substrates where the joint is formed with lead free solders and lead free compositions. The various lead free solders and lead free compositions are chosen so that there is a sufficient difference in liquidus temperatures such that some components may be joined to, or removed from, the laminate substrate without disturbing other components on the laminate substrate.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Inventors: CHARLES L. ARVIN, CLEMENT J. FORTIN, CHRISTOPHER D. MUZZY, BRIAN W. QUINLAN, THOMAS A. WASSICK, THOMAS WEISS
  • Patent number: 10636750
    Abstract: A semiconductor device which includes a substrate having integrated circuits; and metallization layers on the substrate, the metallization layers having a peripheral region adjacent to a kerf region of the semiconductor device and containing a crack stop structure. The crack stop structure includes a bottom portion containing a plurality of the metallization layers connected by vias with each metallization layer decreasing in width in a step pyramid structure from a bottom of the bottom portion to a top of the bottom portion; and a top portion containing a top metallization layer of the metallization layers connected to the bottom portion, the top metallization layer being wider than a top-most metallization layer of the bottom portion and having a segment that extends toward the kerf region so as to create an overhang with respect to the bottom portion.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: April 28, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shidong Li, Kirk D. Peterson, Nicolas Pizzuti, Thomas M. Shaw, Thomas A. Wassick
  • Publication number: 20200118942
    Abstract: A semiconductor device which includes a substrate having integrated circuits; and metallization layers on the substrate, the metallization layers having a peripheral region adjacent to a kerf region of the semiconductor device and containing a crack stop structure. The crack stop structure includes a bottom portion containing a plurality of the metallization layers connected by vias with each metallization layer decreasing in width in a step pyramid structure from a bottom of the bottom portion to a top of the bottom portion; and a top portion containing a top metallization layer of the metallization layers connected to the bottom portion, the top metallization layer being wider than a top-most metallization layer of the bottom portion and having a segment that extends toward the kerf region so as to create an overhang with respect to the bottom portion.
    Type: Application
    Filed: October 15, 2018
    Publication date: April 16, 2020
    Inventors: Shidong Li, Kirk D. Peterson, Nicolas Pizzuti, Thomas M. Shaw, Thomas A. Wassick
  • Patent number: 10586782
    Abstract: A method and structure for joining a semiconductor device and a laminate substrate or two laminate substrates where the joint is formed with lead free solders and lead free compositions. The various lead free solders and lead free compositions are chosen so that there is a sufficient difference in liquidus temperatures such that some components may be joined to, or removed from, the laminate substrate without disturbing other components on the laminate substrate.
    Type: Grant
    Filed: July 1, 2017
    Date of Patent: March 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles L. Arvin, Clement J. Fortin, Christopher D. Muzzy, Brian W. Quinlan, Thomas A. Wassick, Thomas Weiss
  • Patent number: 10381276
    Abstract: A laminate includes a plurality of buildup layers disposed on a core and a plurality of unit cells defined in the buildup layers. Each unit cell includes: at least one test via that passes through at least two of the buildup layers and that is electrically connected to testing locations on a probe accessible location of the laminate; and two or more dummy vias disposed in the unit cell. The dummy vias are arranged in the unit cell at one of a plurality of distances from the test via.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: August 13, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sushumna Iruvanti, Shidong Li, Marek A. Orlowski, David L. Questad, Tuhin Sinha, Krishna R. Tunga, Thomas A. Wassick, Randall J. Werner, Jeffrey A. Zitz
  • Patent number: 10249548
    Abstract: A laminate includes a plurality of buildup layers disposed on a core and a plurality of unit cells defined in the buildup layers. Each unit cell includes: at least one test via that passes through at least two of the buildup layers and that is electrically connected to testing locations on a probe accessible location of the laminate; and two or more dummy vias disposed in the unit cell. The dummy vias are arranged in the unit cell at one of a plurality of distances from the test via.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: April 2, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sushumna Iruvanti, Shidong Li, Marek A. Orlowski, David L. Questad, Tuhin Sinha, Krishna R. Tunga, Thomas A. Wassick, Randall J. Werner, Jeffrey A. Zitz
  • Publication number: 20190006312
    Abstract: A method and structure for joining a semiconductor device and a laminate substrate or two laminate substrates where the joint is formed with lead free solders and lead free compositions. The various lead free solders and lead free compositions are chosen so that there is a sufficient difference in liquidus temperatures such that some components may be joined to, or removed from, the laminate substrate without disturbing other components on the laminate substrate.
    Type: Application
    Filed: July 1, 2017
    Publication date: January 3, 2019
    Inventors: CHARLES L. ARVIN, Clement Fortin, Christopher D. Muzzy, Brian W. Quinlan, Thomas A. Wassick, Thomas Weiss
  • Patent number: 9947598
    Abstract: A methodology and associated wafer level assembly of testing crackstop structure designs. The wafer level semiconductor assembly includes: a substrate structure shaped to define a set of horizontal directions; a metallization layer located on top of the substrate structure, with the metallization layer including a crackstop structure formed therein in accordance with a crackstop structure design; and a tensioned layer located on top of the metallization layer, with the tensioned layer being made of material having internal tensile forces oriented in the horizontal directions. The tensile forces promote horizontal direction crack propagation in the metallization layer so that the crackstop structure design can be tested more rigorously and reliably before deciding on the crackstop design structure to put into mass production (which mass produced product would typically not include the tensioned layer).
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: April 17, 2018
    Assignee: International Business Machines Corporation
    Inventors: Krishna R. Tunga, Karen P. McLaughlin, Charles L. Arvin, Brian R. Sundlof, Steven P. Ostrander, Christopher D. Muzzy, Thomas A. Wassick
  • Publication number: 20180076101
    Abstract: A laminate includes a plurality of buildup layers disposed on a core and a plurality of unit cells defined in the buildup layers. Each unit cell includes: at least one test via that passes through at least two of the buildup layers and that is electrically connected to testing locations on a probe accessible location of the laminate; and two or more dummy vias disposed in the unit cell. The dummy vias are arranged in the unit cell at one of a plurality of distances from the test via.
    Type: Application
    Filed: November 15, 2017
    Publication date: March 15, 2018
    Inventors: Sushumna Iruvanti, Shidong Li, Marek A. Orlowski, David L. Questad, Tuhin Sinha, Krishna R. Tunga, Thomas A. Wassick, Randall J. Werner, Jeffrey A. Zitz
  • Patent number: 9853006
    Abstract: A three dimensional multi-die package includes a first die and second die. The first die includes a contact attached to solder. The second die is thinned by adhesively attaching a handler to a top side of the second die and thinning a bottom side of the second die. The second die includes a multilayer contact of layered metallurgy that inhibits transfer of adhesive thereto. The layered metallurgy includes at least one layer that is wettable to the solder. The multilayer contact may include a Nickel layer, a Copper layer upon the Nickel layer, and a Nickel-Iron layer upon the Copper layer. The multilayer contact may also include a Nickel layer, a Copper-Tin layer upon the Nickel layer, and a Tin layer upon the Copper-Tin layer.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: December 26, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Charles L. Arvin, Harry D. Cox, Eric D. Perfecto, Thomas A. Wassick
  • Patent number: 9793232
    Abstract: A standoff structure for providing improved interconnects is provided, wherein the structure employs nickel copper alloy or copper structures having increased resistivity.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: October 17, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles L. Arvin, Luc Guerin, Sylvain Ouimet, Sylvain Pharand, Thomas A. Wassick
  • Patent number: 9773726
    Abstract: Wiring structures, methods for providing a wiring structure, and methods for distributing currents with a wiring structure from one or more through-substrate vias to multiple bumps. A first current is directed from a first through-substrate via of a first electrical resistance through a first connection line to a first bump and directing a second current from the first through-substrate via through a second connection line of a second electrical resistance to a second bump. The first connection line has a first length relative to a first position of the first bump and a first cross-sectional area, the second connection line has a second length relative to a first position of the second bump and a second cross-sectional area, the second length is different from the first length, and the second cross-sectional area is different from the first cross-sectional area.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: September 26, 2017
    Assignee: International Business Machines Corporation
    Inventors: Timothy D. Sullivan, Thomas A. Wassick
  • Publication number: 20170178982
    Abstract: A laminate includes a plurality of buildup layers disposed on a core and a plurality of unit cells defined in the buildup layers. Each unit cell includes: at least one test via that passes through at least two of the buildup layers and that is electrically connected to testing locations on a probe accessible location of the laminate; and two or more dummy vias disposed in the unit cell. The dummy vias are arranged in the unit cell at one of a plurality of distances from the test via.
    Type: Application
    Filed: December 17, 2015
    Publication date: June 22, 2017
    Inventors: Sushumna Iruvanti, Shidong Li, Marek A. Orlowski, David L. Questad, Tuhin Sinha, Krishna R. Tunga, Thomas A. Wassick, Randall J. Werner, Jeffrey A. Zitz
  • Publication number: 20170077021
    Abstract: Wiring structures, methods for providing a wiring structure, and methods for distributing currents with a wiring structure from one or more through-substrate vias to multiple bumps. A first current is directed from a first through-substrate via of a first electrical resistance through a first connection line to a first bump and directing a second current from the first through-substrate via through a second connection line of a second electrical resistance to a second bump. The first connection line has a first length relative to a first position of the first bump and a first cross-sectional area, the second connection line has a second length relative to a first position of the second bump and a second cross-sectional area, the second length is different from the first length, and the second cross-sectional area is different from the first cross-sectional area.
    Type: Application
    Filed: November 3, 2016
    Publication date: March 16, 2017
    Inventors: Timothy D. Sullivan, Thomas A. Wassick
  • Patent number: 9515035
    Abstract: Wiring structures, methods for providing a wiring structure, and methods for distributing currents with a wiring structure from one or more through-substrate vias to multiple bumps. A first current is directed from a first through-substrate via of a first electrical resistance through a first connection line to a first bump and directing a second current from the first through-substrate via through a second connection line of a second electrical resistance to a second bump. The first connection line has a first length relative to a first position of the first bump and a first cross-sectional area, the second connection line has a second length relative to a first position of the second bump and a second cross-sectional area, the second length is different from the first length, and the second cross-sectional area is different from the first cross-sectional area.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: December 6, 2016
    Assignee: International Business Machines Corporation
    Inventors: Timothy D. Sullivan, Thomas A. Wassick