Patents by Inventor Thomas Aisenbrey

Thomas Aisenbrey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050139812
    Abstract: A molded conductive loaded resin-based product is processed to reduce surface resistivity. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, aluminum fiber, or the like.
    Type: Application
    Filed: February 17, 2005
    Publication date: June 30, 2005
    Inventor: Thomas Aisenbrey
  • Publication number: 20050136326
    Abstract: Electrical terminals are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, aluminum fiber, or the like.
    Type: Application
    Filed: February 8, 2005
    Publication date: June 23, 2005
    Inventor: Thomas Aisenbrey
  • Publication number: 20050078050
    Abstract: Antennas are formed of a conductive loaded resin-based material with conductive wrapping, embedding, and/or center-fusing. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, aluminum that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, aluminum fiber, or the like.
    Type: Application
    Filed: October 18, 2004
    Publication date: April 14, 2005
    Inventor: Thomas Aisenbrey
  • Patent number: 6873298
    Abstract: A flat panel antenna, monopole or dipole, formed from a conductive loaded resin-based material containing micron conductive powders or micron conductive fibers to provide conductivity. The monopole antenna has an antenna element having an outer periphery with a length equal to an integral multiple of a quarter wavelength of the desired center frequency of the antenna. A bobbin, also formed of the conductive loaded resin-based material, and is attached to the antenna element by connection elements. A coil of conductive wire, having two ends connected to a coaxial cable, is wound around the bobbin. The coaxial cable can deliver power to a radiating antenna or extract power from a receiving antenna. The dipole antenna has first and second antenna elements both formed of conductive loaded resin-based material. The peripheries of the first and second antenna elements have lengths equal to an integral multiple of a quarter wavelength of a first and second frequency.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: March 29, 2005
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Publication number: 20050062669
    Abstract: Antennas are formed of a conductive loaded resin-based material with conductive threading or stitching. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Application
    Filed: October 12, 2004
    Publication date: March 24, 2005
    Inventor: Thomas Aisenbrey
  • Patent number: 6870516
    Abstract: Low cost antennas formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises conductor fibers or conductor particles in a resin or plastic host wherein the ratio of the weight of the conductor fibers or conductor particles to the weight of the resin or plastic host is between about 0.20 and 0.40. The conductive fibers can be stainless steel, nickel, copper, silver, or the like. The antenna elements can be formed using methods such as injection molding or extrusion. Virtually any antenna fabricated by conventional means such as wire, strip-line, printed circuit boards, or the like can be fabricated using the conductive loaded resin-based materials. The conductive loaded resin-based material used to form the antenna elements can be in the form of a thin flexible woven fabric which can readily cut to the desired shape.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: March 22, 2005
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Patent number: 6870505
    Abstract: A multi-segmented planar antenna with a built in ground plane and method of forming the antenna are described. The antenna elements are formed on a layer of first dielectric having conducting material on both the first and second sides of the layer of first dielectric, such as a printed circuit board. Antenna elements are formed on both sides of the layer of first dielectric using selective etching of the conducting material. Two antenna elements are generally rectangular separated by a narrow gap and electrically connected by two shorting strips across the gap. Two antenna elements are long and narrow wherein the length of each is an integral multiple of a quarter wavelength of the operating frequencies of the antenna A layer of second dielectric is placed between the layer of first dielectric having the antenna elements and a ground plane. The antenna can be fully encapsulated in a plastic encapsulation material.
    Type: Grant
    Filed: January 29, 2003
    Date of Patent: March 22, 2005
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Publication number: 20050033397
    Abstract: Electrical stimulators and shocking devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Application
    Filed: July 22, 2004
    Publication date: February 10, 2005
    Inventor: Thomas Aisenbrey
  • Publication number: 20050029000
    Abstract: Electromagnetic energy absorbing, shrinkable tubing are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Application
    Filed: August 30, 2004
    Publication date: February 10, 2005
    Inventor: Thomas Aisenbrey
  • Publication number: 20050031823
    Abstract: Conductive labels useful for anti-static devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Application
    Filed: August 31, 2004
    Publication date: February 10, 2005
    Inventor: Thomas Aisenbrey
  • Publication number: 20050025919
    Abstract: Conductive containers useful for anti-static devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Application
    Filed: August 30, 2004
    Publication date: February 3, 2005
    Inventor: Thomas Aisenbrey
  • Publication number: 20050024291
    Abstract: Electrical interfaces formed into a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Application
    Filed: September 2, 2004
    Publication date: February 3, 2005
    Inventor: Thomas Aisenbrey
  • Publication number: 20050024290
    Abstract: RFID antennas are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Application
    Filed: September 2, 2004
    Publication date: February 3, 2005
    Inventor: Thomas Aisenbrey
  • Publication number: 20050006126
    Abstract: Shielded cable devices are formed of a conductive loaded resin-based material. Non-insulated conductors with shields, coaxial shielded cables, twisted pair shielded cables, and multi-wire shielded cables are described. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The ratio of the weight of the conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers to the weight of the base resin host is between about 0.20 and 0.40. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders.
    Type: Application
    Filed: March 26, 2004
    Publication date: January 13, 2005
    Inventor: Thomas Aisenbrey
  • Publication number: 20050007290
    Abstract: Omni-directional antenna devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Application
    Filed: July 28, 2004
    Publication date: January 13, 2005
    Inventor: Thomas Aisenbrey
  • Publication number: 20050001287
    Abstract: Resistor devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The conductive materials comprise between about 20% and about 50% of the total weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Application
    Filed: July 1, 2004
    Publication date: January 6, 2005
    Inventor: Thomas Aisenbrey
  • Publication number: 20050001780
    Abstract: Electromagnetic energy absorbing devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The ratio of the weight of the conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers to the weight of the base resin host is between about 0.20 and 0.40. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Application
    Filed: July 2, 2004
    Publication date: January 6, 2005
    Inventor: Thomas Aisenbrey
  • Publication number: 20040239570
    Abstract: Electronic probe devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The ratio of the weight of the conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers to the weight of the base resin host is between about 0.20 and 0.40. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Application
    Filed: June 16, 2004
    Publication date: December 2, 2004
    Applicant: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Publication number: 20040239578
    Abstract: Electromagnetic absorbing devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The ratio of the weight of the conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers to the weight of the base resin host is between about 0.20 and 0.40. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Application
    Filed: June 8, 2004
    Publication date: December 2, 2004
    Applicant: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Publication number: 20040238798
    Abstract: Moldable capsules of a conductive loaded resin-based material are created. The moldable capsules comprise a conductive element core radially surrounded by a resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The conductive element core comprises between about 20% and about 50% of the total weight of the moldable capsule in one embodiment, between about 20% and about 40% in another embodiment, between about 25% and about 35% in another embodiment, and about 30% in another embodiment. The micron conductive powders are formed from non-metals, that may also be metallic plated, or from metals, that may also be metallic plated, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Application
    Filed: July 1, 2004
    Publication date: December 2, 2004
    Applicant: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey