Patents by Inventor Thomas Blodt

Thomas Blodt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10768035
    Abstract: A radar fill-level measuring device for measuring a fill level of a fill substance in a container using the travel time principle, comprising a circuit board with a sending/receiving system for sending and receiving high-frequency radar waves, wherein the circuit board has at least two openings, a hollow conductor having at least two lateral edge projections, wherein lengths of the at least two projections are greater than the thickness of the circuit board, wherein the at least two projections are led through the at least two openings, so that the at least two projections extend partially out from a second side of the circuit board, a lid, which is secured to parts of the at least two projections, which extend out from the second side of the circuit board, such that the hollow conductor is secured to the circuit board by means of the lid.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: September 8, 2020
    Assignee: ENDRESS+HAUSER SE+CO.KG
    Inventors: Christian Seiler, Thomas Blodt, Jorg Fuglistaller
  • Patent number: 10422683
    Abstract: An apparatus for determining the fill level of a fill substance in a container, comprising at least one antenna element. The at least one antenna element has a hollow conductor, wherein there is arranged at a first end region of the hollow conductor a coupling element for the out-coupling of transmission signals and for the in-coupling of received signals, wherein there is arranged at a second end region of the hollow conductor a radiating element directed toward the fill substance, a transmitting/receiving unit having a signal generator for producing the transmission signals. The transmitting/receiving unit determines the fill level of the fill substance in the container based on the travel time of the transmission- and received signals.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: September 24, 2019
    Assignee: ENDRESS+HAUSER SE+CO.KG
    Inventors: Thomas Blodt, Winfried Mayer, Christian Seiler
  • Publication number: 20190271773
    Abstract: The invention relates to a frequency converter circuit for a radar-based distance-measuring device. The core of the frequency converter circuit is a non-linear, high-frequency component, having a frequency connection point and a signal connection point, which serves as a signal input for a low-frequency input signal. On the reception side, the frequency converter circuit comprises at least one receiving antenna for receiving the high-frequency reception signal and a non-linear semiconductor component for downconverting the high-frequency reception signal. The frequency converter circuit therefore uses the effect that, by means of the low-frequency input signal, corresponding harmonic waves are induced at the non-linear, high-frequency component. Furthermore, the high-frequency reception signal is downconverted into a low-frequency evaluation signal, whereby the further determination of the distance can be performed on the basis of the low-frequency evaluation signal, which can be processed more easily.
    Type: Application
    Filed: August 24, 2017
    Publication date: September 5, 2019
    Inventors: Thomas Blödt, Peter Klöfer
  • Patent number: 10345350
    Abstract: The invention relates to a method for detecting high-frequency signals (22), comprising method steps as follows: dividing a high-frequency signal (22) into a raw signal (3) and a reference signal (4), attenuating the raw signal (3) into an attenuated signal (9), wherein the attenuating happens as a function of frequency of the raw signal (3) in accordance with an attenuation characteristic, rectifying the attenuated signal (9), so that a first direct voltage (15) is generated, rectifying the reference signal (4), so that a second direct voltage (16) is generated, ascertaining an attenuation from the ratio of the first and second direct voltages (15, 16), wherein the ratio corresponds to an attenuation factor for the attenuation of the raw signal (3), determining the frequency of the high-frequency signal (22) from the attenuation factor and an attenuation characteristic (17).
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: July 9, 2019
    Assignee: ENDRESS+HAUSER SE+CO.KG
    Inventors: Thomas Blodt, Timo Schwall
  • Publication number: 20190187071
    Abstract: The present disclosure relates to a measuring device for measuring a dielectric constant of fill substances in containers. The measuring device includes: a transmitting circuit for transmitting a first electromagnetic high-frequency signal and a second electromagnetic high-frequency signal; a receiving circuit for receiving the two high-frequency signals; and an evaluation circuit to ascertain a first phase shift between the transmitting and the receiving of the first high-frequency signal, to ascertain a second phase shift between the transmitting and the receiving of the second high-frequency signal, and to ascertain an amplitude of one of the received high-frequency signals. Based on these three values, the dielectric constant is determined. By determining phase shift at different frequencies, it is possible according to the present disclosure, especially in the case of solid-type fill substances, to determine their dielectric constant uncorrupted, thus without influence of air inclusions or moisture.
    Type: Application
    Filed: December 18, 2018
    Publication date: June 20, 2019
    Inventors: Thomas Blödt, Tobias Brengartner
  • Publication number: 20190094060
    Abstract: The disclosure relates to a method for measuring fill level of a fill substance using terahertz (THz) pulses or for determining distance to an object using terahertz pulses, as well as to a fill-level measuring device suitable for performing such method. The THz pulses are transmitted with a repetition frequency, wherein the repetition frequency according to the invention is controlled in such a manner as a function of travel time that the repetition frequency increases in the case of decreasing travel time and decreases in the case of increasing travel time. The separation or the fill level is determined not based on the measured travel time, but is based on repetition frequency. An exact fill level determination can be performed based on THz pulses, even when the frequency of the THz pulses significantly fluctuates. Consequently, very simply embodied pulse production units with comparatively small requirements for frequency stability of the THz pulses can be used.
    Type: Application
    Filed: February 13, 2017
    Publication date: March 28, 2019
    Inventor: Thomas Blödt
  • Patent number: 10236555
    Abstract: The present disclosure relates to a device for transferring signals from at least one housing opening of a housing, which is metallic at least in part, by means of electromagnetic waves of at least one specific wavelength. The device includes a transmitting/receiving unit arranged in the housing; at least one primary antenna arranged in the housing; a first secondary antenna for receiving the electromagnetic waves decoupled from the primary antenna; and a second secondary antenna for receiving the electromagnetic waves transferred from outside the housing, wherein the second secondary antenna is arranged outside the housing on the housing opening, wherein a reflection point is arranged between the first and second secondary antennas, such that an impedance jump occurs between the first and second secondary antennas.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: March 19, 2019
    Assignee: Endress+Hauser SE+Co. KG
    Inventor: Thomas Blödt
  • Patent number: 10224597
    Abstract: Antenna arrangement for a fill-level measuring device for ascertaining and monitoring a fill level of a medium in a container by means of a microwave, travel-time measurement method, comprising a horn antenna having a horn shaped component for focusing microwaves and a microwave transmissive, process isolating element, which is provided in the region of the exit opening of the horn shaped component facing the medium and which isolates the interior of the horn shaped component from the interior of the container. There is provided for additional focusing of the microwaves a lengthening component, which lengthens the horn shaped component in the radiated direction of the microwaves. The process isolating element is embodied and arranged in such a manner that it isolates the horn shaped component and the lengthening component galvanically from one another.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: March 5, 2019
    Assignee: ENDRESS+HAUSER SE+CO. KG
    Inventor: Thomas Blodt
  • Patent number: 10215610
    Abstract: The invention relates to an apparatus for transmitting and receiving electromagnetic waves (EM waves) for ascertaining and monitoring a fill level of a medium in a container, comprising a first hollow conductor with a first coupling element for the out- and in-coupling of EM waves, a second hollow conductor with a second coupling element for the out- and in-coupling of EM waves, a horn radiator for radiating and focusing of EM waves, wherein the first and second hollow conductors are dimensioned such that EM waves out-coupled from the first and second coupling elements radiate from the horn radiator scattered and with weak intensity, or scattered and weak intensity EM waves, which are received from the horn radiator, couple to the first and second coupling elements, and EM waves out-coupled only from the first coupling element radiate from the horn radiator focused and with strong intensity, or focused and strong intensity EM waves, which are received from the horn radiator couple only to the first coupling e
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: February 26, 2019
    Assignee: Endress+Hauser SE+Co. KG
    Inventor: Thomas Blödt
  • Patent number: 10168197
    Abstract: A fill-level measuring device working according to the pulse radar principle for measuring a fill level of a fill substance in a container, comprising: a transmission system a pulse producing system, which, comprises, in each case, at least two measurements, for each measurement, produces a transmission signal composed of at least one microwave pulse periodically following one another, of center frequency predetermined for the particular measurement. The center frequencies of the transmission signals of at least two of the measurement are different from one another.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: January 1, 2019
    Assignee: ENDRESS+HAUSER SE+CO. KG
    Inventor: Thomas Blodt
  • Publication number: 20180224318
    Abstract: An Apparatus for determining and/or monitoring at least one process variable of a medium in a container, comprising: a mechanically oscillatable unit a driving/receiving unit for exciting the mechanically oscillatable unit to execute mechanical oscillations by means of an electrical, exciting signal and for receiving and transducing the mechanical oscillations into an electrical, received signal a control unit, which is embodied to produce the exciter signal starting from the received signal and to set a predeterminable phase shift between the exciter signal and the received signal, an electromagnetically oscillatable unit, an active element for producing and/or maintaining electromagnetic oscillations in the electromagnetically oscillatable unit, which active element forms together with the electromagnetically oscillatable unit an oscillator, a coupling unit, which is embodied to tap an output signal from the active element, and an evaluation unit, which evaluation unit is embodied to determine the at least
    Type: Application
    Filed: July 26, 2016
    Publication date: August 9, 2018
    Inventors: Thomas Blodt, Tobias Brentgartner, Benjamin Mack, Peter Klofer
  • Publication number: 20180216984
    Abstract: A radar fill-level measuring device for measuring a fill level of a fill substance in a container using the travel time principle, comprising a circuit board with a sending/receiving system for sending and receiving high-frequency radar waves, wherein the circuit board has at least two openings, a hollow conductor having at least two lateral edge projections, wherein lengths of the at least two projections are greater than the thickness of the circuit board, wherein the at least two projections are led through the at least two openings, so that the at least two projections extend partially out from a second side of the circuit board, a lid, which is secured to parts of the at least two projections, which extend out from the second side of the circuit board, such that the hollow conductor is secured to the circuit board by means of the lid.
    Type: Application
    Filed: July 26, 2016
    Publication date: August 2, 2018
    Inventors: Christian Seiler, Thomas Blodt, Jorg Fuglistaller
  • Publication number: 20180209835
    Abstract: The invention relates to a method for measuring fill level of a substance in a container. The method is based on pulse radar in which the repetition frequency of the microwave pulse is not constant but is controlled as a function of travel time. The repetition frequency increases as the travel time becomes shorter and lessens as the travel time becomes longer. The fill level is not based on the measured travel time, but is determined based on the resulting repetition frequency. The invention provides a pulse radar-based method for fill level measurement that can be implemented with reduced circuit complexity. This results from the fact that only the repetition frequency needs to be registered for fill level measurement. Neither a complex analog evaluating circuit nor a highly accurate time measurement are required. Complex digital data processing, such as the FMCW-based method required for fill level measurement, is absent.
    Type: Application
    Filed: June 22, 2016
    Publication date: July 26, 2018
    Inventors: Thomas Blödt, Peter Klöfer, Maik Weishaar
  • Patent number: 10001398
    Abstract: A fill-level measuring device for determining the fill level of a process medium in a container by means of a travel-time method. The fill-level measuring device is distinguished by features including that the fill-level measuring device has structure for determining the dielectric constant of a second medium, which is located between the measuring device and the process medium. The structure for determining the dielectric constant comprises at least one waveguide for a high-frequency measuring signal, wherein such waveguide is filled at least sectionally with a dielectric and embodied and arrangeable in such a manner that the dielectric forms with the second medium an interface, at which a significant fraction of the measuring signal supplied to the second medium via the waveguide is reflected. Furthermore, an apparatus for determining the dielectric constant and a system of such an apparatus and a fill-level measuring device are proposed.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: June 19, 2018
    Assignee: ENDRESS + HAUSER GMBH + CO. KG
    Inventors: Thomas Blodt, Peter Klofer
  • Publication number: 20180156849
    Abstract: A method for detecting high-frequency signals, comprising: dividing a high-frequency signal into a raw signal and a reference signal; attenuating the raw signal into an attenuated signal, wherein the attenuating happens as a function of frequency of the raw signal in accordance with an attenuation characteristic; rectifying the attenuated signal, so that a first direct voltage is generated; rectifying the reference signal, so that a second direct voltage is generated; ascertaining an attenuation from the ratio of the first and second direct voltages, wherein the ratio corresponds to an attenuation factor for the attenuation of the raw signal; and determining the frequency of the high-frequency signal from the attenuation factor and an attenuation characteristic.
    Type: Application
    Filed: May 10, 2016
    Publication date: June 7, 2018
    Inventors: Thomas Blodt, Timo Schwall
  • Publication number: 20180031406
    Abstract: The invention relates to an apparatus for transmitting and receiving electromagnetic waves (EM waves) for ascertaining and monitoring a fill level of a medium in a container, comprising a first hollow conductor with a first coupling element for the out- and in-coupling of EM waves, a second hollow conductor with a second coupling element for the out- and in-coupling of EM waves, a horn radiator for radiating and focusing of EM waves, wherein the first and second hollow conductors are dimensioned such that EM waves out-coupled from the first and second coupling elements radiate from the horn radiator scattered and with weak intensity, or scattered and weak intensity EM waves, which are received from the horn radiator, couple to the first and second coupling elements, and EM waves out-coupled only from the first coupling element radiate from the horn radiator focused and with strong intensity, or focused and strong intensity EM waves, which are received from the horn radiator couple only to the first coupling e
    Type: Application
    Filed: January 27, 2016
    Publication date: February 1, 2018
    Inventor: Thomas Blödt
  • Publication number: 20180034129
    Abstract: The present disclosure relates to a device for transferring signals from at least one housing opening of a housing, which is metallic at least in part, by means of electromagnetic waves of at least one specific wavelength. The device includes a transmitting/receiving unit arranged in the housing; at least one primary antenna arranged in the housing; a first secondary antenna for receiving the electromagnetic waves decoupled from the primary antenna; and a second secondary antenna for receiving the electromagnetic waves transferred from outside the housing, wherein the second secondary antenna is arranged outside the housing on the housing opening, wherein a reflection point is arranged between the first and second secondary antennas, such that an impedance jump occurs between the first and second secondary antennas.
    Type: Application
    Filed: November 3, 2015
    Publication date: February 1, 2018
    Inventor: Thomas Blödt
  • Patent number: 9882545
    Abstract: A method for optimizing impedance of a connecting element between a first component and a second component of a high-frequency apparatus. The first component and the second component have at least two level states, wherein the connecting element has an input impedance and an output impedance. The first component has respective impedances in each of the at least two level states, wherein the second component has respective impedances in each of the at least two level states.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: January 30, 2018
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventor: Thomas Blodt
  • Patent number: 9851235
    Abstract: An apparatus for determining and/or monitoring at least one process variable of a medium in a container or pipeline, including a resonator, which is in contact with an interior of the container or the pipeline, an active element for producing a high-frequency signal in the resonator and an electronics unit, which is embodied to receive from a unit formed of the resonator and the active element an electrical output signal. The electrical output signal is evaluated with reference to frequency.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: December 26, 2017
    Assignee: ENDRESS + HAUSER GMBH + CO. KG
    Inventor: Thomas Blodt
  • Patent number: 9812781
    Abstract: Antenna apparatus for transmitting data of a fill-level measuring device, comprising at least two coil arrangements (i=1, 2 . . . n). The coil arrangements i=1, 2 . . . n have a coil length (li) and a coil diameter (di), wherein the coil diameter (di) is less than the associated coil length (li). The coil arrangements (i=1, 2 . . . n) each intersect a straight line (e) in such a way that the straight line (e) and the longitudinal axis of the coil arrangements (i=1, 2 . . . n) form at the intersection an acute or 90° angle of intersection (g) of at least 85°, wherein the intersection of each coil arrangement (i=1, 2 . . . n) is arranged at a position between 3 7 ? l i ? ? and ? ? 4 7 ? l i , wherein the at least two coil arrangements (i=1, 2 . . . n) are arranged along this line (e) in a sequence, in the case of which the coil lengths li of the coil arrangements (i=1, 2 . . . n) monotonically decrease l1>l2> . . . ln. The at least two coil arrangements (i=1, 2 . . .
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: November 7, 2017
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventor: Thomas Blodt