Patents by Inventor Thomas C. Evans, Jr.

Thomas C. Evans, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230407419
    Abstract: Compositions and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The compositions and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The compositions and methods are directed to labelled probes and their uses in Loop-Mediated Isothermal Amplification (LAMP) diagnostic tests to detect target DNA from the environment or from an individual and also to detect specific variants of the target DNA, both with similar sensitivity.
    Type: Application
    Filed: August 18, 2023
    Publication date: December 21, 2023
    Applicant: New England Biolabs, Inc.
    Inventors: Nathan Tanner, Yinhua Zhang, Eric Hunt, Gregory Patton, Guoping Ren, Zhiru Li, Andrew Barry, Nicole Nichols, Catherine B. Poole, Harriet M. Strimpel, Ivan R. Correa, Jr., Clotilde Carlow, Esta Slayton, Thomas C. Evans, Jr.
  • Publication number: 20230357838
    Abstract: Provided herein, among other things, is a method for deaminating a double-stranded nucleic acid. In some embodiments, the method may comprise contacting a double-stranded DNA substrate that comprises cytosines and a double-stranded DNA deaminase having an amino acid sequence that is at least 80% identical to any of SEQ ID NOS: 21, 40, 47, 49, 50, 55, 58, 59, 62, 63, 65, 67, 70, 71, 76, 106, 107, 110, 112, 114, 117, 163 and/or 164 to produce a deamination product that comprises deaminated cytosines. Enzymes and kits for performing the method are also provided.
    Type: Application
    Filed: May 24, 2023
    Publication date: November 9, 2023
    Applicant: New England Biolabs, Inc.
    Inventors: Zhiyi Sun, Sean R. Johnson, Bo Yan, Lixin Chen, G. Brett Robb, Thomas C. Evans, JR., Romualdas Vaisvila
  • Patent number: 11732315
    Abstract: Compositions and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The compositions and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The compositions and methods are directed to labelled probes and their uses in Loop-Mediated Isothermal Amplification (LAMP) diagnostic tests to detect target DNA from the environment or from an individual and also to detect specific variants of the target DNA, both with similar sensitivity.
    Type: Grant
    Filed: September 28, 2022
    Date of Patent: August 22, 2023
    Assignee: New England Biolabs, Inc.
    Inventors: Nathan Tanner, Yinhua Zhang, Eric Hunt, Gregory Patton, Guoping Ren, Zhiru Li, Andrew Barry, Nicole Nichols, Catherine B. Poole, Harriet M. Strimpel, Ivan R. Correa, Jr., Clotilde Carlow, Esta Slayton, Thomas C. Evans, Jr.
  • Publication number: 20230257730
    Abstract: Provided herein, among other things, is a method for deaminating a double-stranded nucleic acid. In some embodiments, the method may comprise contacting a double-stranded DNA substrate that comprises cytosines and a double-stranded DNA deaminase having an amino acid sequence that is at least 80% identical to any of SEQ ID NOS: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 19, 24, 26, 27, 28, 33, 40, 49, 50, 63, 95, 96, 97, and/or 99 to produce a deamination product that comprises deaminated cytosines. Enzymes and kits for performing the method are also provided.
    Type: Application
    Filed: November 22, 2022
    Publication date: August 17, 2023
    Applicant: New England Biolabs, Inc.
    Inventors: Romualdas Vaisvila, Sean R. Johnson, Zhiyi Sun, Thomas C. Evans, JR.
  • Patent number: 11713484
    Abstract: Providing herein, among other things, is a method comprising incubating a double-stranded nucleic acid having a nick with a nick translating activity, a ligase, and a nucleotide mix comprising at least one modified nucleotide, to generate a product comprising a patch of a newly synthesized strand of a duplex nucleic acid containing a plurality of modified nucleoside monophosphates that are at or adjacent to the site of the nick. In some embodiments, the method may be used to map damaged nucleoside monophosphates in a nucleic acid. Compositions and kits for use in performing the method are also provided.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: August 1, 2023
    Inventors: Kelly M. Zatopek, Vladimir Potapov, Jennifer Ong, Laurence Ettwiller, Lixin Chen, Thomas C. Evans, Jr., Andrew F. Gardner
  • Patent number: 11639498
    Abstract: This disclosure provides, among other things, a composition comprising: comprising a fusion protein comprising: (a) a DNA polymerase; and (b) a heterologous sequence-specific DNA binding domain. A method for copying a DNA template, as well as a kit for performing the same, are also described.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: May 2, 2023
    Assignee: New England Biolabs, Inc.
    Inventors: Pei-Chung Hsieh, Luo Sun, Thomas C. Evans, Jr., Theodore B. Davis, Andrew F. Gardner
  • Publication number: 20230048863
    Abstract: Compositions and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The compositions and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The compositions and methods are directed to labelled probes and their uses in Loop-Mediated Isothermal Amplification (LAMP) diagnostic tests to detect target DNA from the environment or from an individual and also to detect specific variants of the target DNA, both with similar sensitivity.
    Type: Application
    Filed: September 28, 2022
    Publication date: February 16, 2023
    Applicant: New England Biolabs, Inc.
    Inventors: Nathan Tanner, Yinhua Zhang, Eric Hunt, Gregory Patton, Guoping Ren, Zhiru Li, Andrew Barry, Nicole Nichols, Catherine B. Poole, Harriet M. Strimpel, Ivan R. Correa, JR., Clotilde Carlow, Esta Slayton, Thomas C. Evans, JR.
  • Patent number: 11162133
    Abstract: Methods are provided for a rapid, low cost approach to monitoring an amplification reaction. This includes monitoring the progress of isothermal or PCR amplification reactions to completion using pH-sensitive dyes that are either colored or fluorescent. Compositions are described that include a mixture of a DNA polymerase, deoxyribonucleotide triphosphate and Tris buffer in the range of 1.5 mM Tris to 5 mM Tris or equivalent.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: November 2, 2021
    Assignee: New England Biolabs, Inc.
    Inventors: Yinhua Zhang, Nathan Tanner, Thomas C. Evans, Jr.
  • Publication number: 20200325533
    Abstract: Providing herein, among other things, is a method comprising incubating a double-stranded nucleic acid having a nick with a nick translating activity, a ligase, and a nucleotide mix comprising at least one modified nucleotide, to generate a product comprising a patch of a newly synthesized strand of a duplex nucleic acid containing a plurality of modified nucleoside monophosphates that are at or adjacent to the site of the nick. In some embodiments, the method may be used to map damaged nucleoside monophosphates in a nucleic acid. Compositions and kits for use in performing the method are also provided.
    Type: Application
    Filed: August 21, 2018
    Publication date: October 15, 2020
    Applicant: New England Biolabs, Inc.
    Inventors: Kelly M. Zatopek, Vladimir Potapov, Jennifer Ong, Laurence Ettwiller, Lixin Chen, Thomas C. Evans, Jr., Andrew F. Gardner
  • Patent number: 10597710
    Abstract: Compositions and methods are provided for ligating polynucleotides having a length that is greater than 8 nucleotides on an RNA splint. The ligation reaction provides consistent results in high or low ATP concentrations. The reaction can occur rapidly and is generally at least 10 fold more efficient than T4DNA ligase under optimal conditions for T4DNA ligase and the reaction time is less than 6 hours for example, less than 1 hour.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: March 24, 2020
    Assignee: New England Biolabs, Inc.
    Inventors: Gregory Lohman, Thomas C. Evans, Jr., Larry A. McReynolds
  • Publication number: 20190169683
    Abstract: Methods are provided for a rapid, low cost approach to monitoring an amplification reaction. This includes monitoring the progress of isothermal or PCR amplification reactions to completion using pH-sensitive dyes that are either colored or fluorescent. Compositions are described that include a mixture of a DNA polymerase, deoxyribonucleotide triphosphate and Tris buffer in the range of 1.5 mM Tris to 5 mM Tris or equivalent.
    Type: Application
    Filed: May 12, 2017
    Publication date: June 6, 2019
    Applicant: New England Biolabs, Inc.
    Inventors: Yinhua Zhang, Nathan Tanner, Thomas C. Evans, Jr.
  • Patent number: 10301673
    Abstract: Provided herein is a method for reducing amplification of non-template molecules in a nucleic acid sample. In certain embodiments, the method involves adding a helicase to a reaction mixture for non-helicase-dependent amplification of target nucleic acid.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: May 28, 2019
    Inventors: Nathan Tanner, Thomas C. Evans, Jr.
  • Patent number: 10246706
    Abstract: Compositions and methods for performing a template-switching reaction are provided that may include reducing or eliminating concatemerization of the template-switching oligonucleotide (TSO). In some embodiments, the composition may comprise: a reverse transcriptase; a TSO that includes a recognition sequence for a site-specific double strand nucleic acid cleaving enzyme, wherein the TSO has at its 3? end at least one nucleotide capable of hybridizing to at least one or more non-templated nucleotides added to a templated cDNA strand by the reverse transcriptase; and a site-specific double strand nucleic acid cleaving enzyme that cleaves the TSO at the recognition sequence.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: April 2, 2019
    Assignee: New England Biolabs, Inc.
    Inventors: Shengxi Guan, Thomas C. Evans, Jr., Nicole Nichols, Yanxia Bei
  • Patent number: 10240148
    Abstract: Compositions and methods for performing a template-switching reaction are provided that may include reducing or eliminating concatemerization of the template-switching oligonucleotide (TSO). In some embodiments, the composition may comprise: a reverse transcriptase; a TSO that includes a recognition sequence for a site-specific double strand nucleic acid cleaving enzyme, wherein the TSO has at its 3? end at least one nucleotide capable of hybridizing to at least one or more non-templated nucleotides added to a templated cDNA strand by the reverse transcriptase; and a site-specific double strand nucleic acid cleaving enzyme that cleaves the TSO at the recognition sequence.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: March 26, 2019
    Assignee: New England Biolabs, Inc.
    Inventors: Shengxi Guan, Thomas C. Evans, Jr., Nicole Nichols, Yanxia Bei
  • Publication number: 20180355328
    Abstract: This disclosure provides, among other things, a composition comprising: comprising a fusion protein comprising: (a) a DNA polymerase; and (b) a heterologous sequence-specific DNA binding domain. A method for copying a DNA template, as well as a kit for performing the same, are also described.
    Type: Application
    Filed: August 20, 2018
    Publication date: December 13, 2018
    Applicant: New England Biolabs, Inc.
    Inventors: Pei-Chung Hsieh, Luo Sun, Thomas C. Evans, JR., Theodore B. Davis, Andrew F. Gardner
  • Patent number: 10081799
    Abstract: This disclosure provides, among other things, a composition comprising: comprising a fusion protein comprising: (a) a DNA polymerase; and (b) a heterologous sequence-specific DNA binding domain. A method for copying a DNA template, as well as a kit for performing the same, are also described.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: September 25, 2018
    Assignee: New England Biolabs, Inc.
    Inventors: Pei-Chung Hsieh, Luo Sun, Thomas C. Evans, Jr., Theodore B. Davis, Andrew Gardner
  • Publication number: 20180223276
    Abstract: Compositions and methods for performing a template-switching reaction are provided that may include reducing or eliminating concatemerization of the template-switching oligonucleotide (TSO). In some embodiments, the composition may comprise: a reverse transcriptase; a TSO that includes a recognition sequence for a site-specific double strand nucleic acid cleaving enzyme, wherein the TSO has at its 3? end at least one nucleotide capable of hybridizing to at least one or more non-templated nucleotides added to a templated cDNA strand by the reverse transcriptase; and a site-specific double strand nucleic acid cleaving enzyme that cleaves the TSO at the recognition sequence.
    Type: Application
    Filed: April 9, 2018
    Publication date: August 9, 2018
    Applicant: New England Biolabs, Inc.
    Inventors: Shengxi Guan, Thomas C. Evans, JR., Nicole Nichols, Yanxia Bei
  • Patent number: 10041051
    Abstract: This disclosure provides, among other things, a composition comprising: comprising a fusion protein comprising: (a) a DNA polymerase; and (b) a heterologous sequence-specific DNA binding domain. A method for copying a DNA template, as well as a kit for performing the same, are also described.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: August 7, 2018
    Assignee: New England Biolabs, Inc.
    Inventors: Pei-Chung Hsieh, Luo Sun, Thomas C. Evans, Jr., Theodore B. Davis, Andrew Gardner
  • Publication number: 20180216098
    Abstract: This disclosure provides, among other things, a composition comprising: a 5? exonuclease; a strand-displacing polymerase; and optionally a single strand DNA binding protein and/or a ligase. A method for polynucleotide assembly to form a synthon, as well as a kit for performing the same, are also described.
    Type: Application
    Filed: August 27, 2015
    Publication date: August 2, 2018
    Applicant: New England Biolabs, Inc.
    Inventors: Pei-Chung Hsieh, Luo Sun, Thomas C. Evans, Jr., Theodore B. Davis, Andrew Gardner
  • Publication number: 20180171399
    Abstract: Provided herein is a method for reducing amplification of non-template molecules in a nucleic acid sample. In certain embodiments, the method involves adding a helicase to a reaction mixture for non-helicase-dependent amplification of target nucleic acid.
    Type: Application
    Filed: February 5, 2018
    Publication date: June 21, 2018
    Applicant: New England Biolabs, Inc.
    Inventors: Nathan Tanner, Thomas C. Evans, JR.