Patents by Inventor Thomas CALLOWAY

Thomas CALLOWAY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220280249
    Abstract: A surgical tool tracking array can include a first marker holder, a second marker holder, and a tool holder. The first marker holder is configured to couple a first marker to the surgical tracking array in a first plane. The second marker holder is configured to couple a second marker to the surgical tool tracking array in a second plane that is independent and substantially parallel to the first plane. The tool holder is configured to couple a portion of a surgical tool to the surgical tool tracking array in a third plane that is independent from the first plane and the second plane.
    Type: Application
    Filed: May 25, 2022
    Publication date: September 8, 2022
    Inventors: Thomas Calloway, Dana Wisniewski, Amaya Raphaelson, Michael Robinson
  • Patent number: 11382713
    Abstract: A camera tracking system for computer assisted navigation during surgery operatively determines a first pose of a second extended-reality (XR) headset relative to stereo tracking cameras located on a first XR headset based on first tracking information from the stereo tracking cameras. The camera tracking system determines a second pose of eyes of a user wearing the second XR headset relative to the stereo tracking cameras located on the first XR headset based on second tracking information from the stereo tracking cameras. The camera tracking system also calibrates an eye-to-display relationship defining pose of the eyes of the user wearing the second XR headset to a display device of the second XR headset based on the determined first and second poses. The camera tracking system also controls where symbols are displayed on the display device of the second XR headset based on the eye-to-display relationship.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: July 12, 2022
    Assignee: Globus Medical, Inc.
    Inventors: Weston Healy, Thomas Calloway
  • Patent number: 11382699
    Abstract: A camera tracking system is disclosed that is configured to obtain a model defining a tracking volume of a set of tracking cameras relative to pose of the set of tracking cameras, and receive tracking information from the set of tracking cameras indicating pose of an extended reality (XR) headset relative to the set of tracking cameras. The camera tracking system is further configured to generate a graphical representation of the tracking volume from a perspective of the XR headset based on the pose of the XR headset indicated by the tracking information and based the model defining the tracking volume of the set of tracking cameras, and provide the graphical representation of the tracking volume to the XR headset for display to the user.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: July 12, 2022
    Assignee: Globus Medical Inc.
    Inventors: Zachary Wassall, Thomas Calloway
  • Patent number: 11382700
    Abstract: A surgical tool tracking array can include a first marker holder, a second marker holder, and a tool holder. The first marker holder is configured to couple a first marker to the surgical tracking array in a first plane. The second marker holder is configured to couple a second marker to the surgical tool tracking array in a second plane that is independent and substantially parallel to the first plane. The tool holder is configured to couple a portion of a surgical tool to the surgical tool tracking array in a third plane that is independent from the first plane and the second plane.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: July 12, 2022
    Assignee: Globus Medical Inc.
    Inventors: Thomas Calloway, Dana Wisniewski, Amaya Raphaelson, Michael Robinson
  • Publication number: 20220211447
    Abstract: A camera tracking bar of a camera tracking system for computer assisted surgery navigation. The camera tracking bar includes a first set of stereo tracking cameras having first resolution, first field of view, and spaced apart on the camera tracking bar by a first baseline distance. The camera tracking bar also includes a second set of stereo tracking cameras having second resolution, second field of view, and spaced apart on the camera tracking bar by a second baseline distance that is less than the first baseline distance. The second set of stereo tracking cameras is positioned between the first set of stereo tracking cameras, and the resolution and/or the field of view of the second set of stereo tracking cameras is different from the resolution and/or the field of view of the first set of stereo tracking cameras. A communication interface provides camera video streams to the camera tracking subsystem.
    Type: Application
    Filed: March 21, 2022
    Publication date: July 7, 2022
    Inventors: Thomas Calloway, Leonid Naimark
  • Patent number: 11317973
    Abstract: A camera tracking bar of a camera tracking system for computer assisted surgery navigation. The camera tracking bar includes a first set of stereo tracking cameras having first resolution, first field of view, and spaced apart on the camera tracking bar by a first baseline distance. The camera tracking bar also includes a second set of stereo tracking cameras having second resolution, second field of view, and spaced apart on the camera tracking bar by a second baseline distance that is less than the first baseline distance. The second set of stereo tracking cameras is positioned between the first set of stereo tracking cameras, and the resolution and/or the field of view of the second set of stereo tracking cameras is different from the resolution and/or the field of view of the first set of stereo tracking cameras. A communication interface provides camera video streams to the camera tracking subsystem.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: May 3, 2022
    Assignee: Globus Medical, Inc.
    Inventors: Thomas Calloway, Leonid Naimark
  • Publication number: 20220125522
    Abstract: Devices, systems, and methods for a robot-assisted surgery. Navigable instrumentation, which are capable of being navigated by a surgeon using the surgical robot system, and navigation software allow for the navigated placement of interbody fusion devices or other surgical devices.
    Type: Application
    Filed: February 26, 2021
    Publication date: April 28, 2022
    Inventors: Thomas Calloway, Amaya Raphaelson, Leonid Naimark
  • Publication number: 20220125520
    Abstract: Devices, systems, and methods for a robot-assisted surgery. Navigable instrumentation, which are capable of being navigated by a surgeon using the surgical robot system, and navigation software allow for the navigated placement of interbody fusion devices or other surgical devices.
    Type: Application
    Filed: October 27, 2020
    Publication date: April 28, 2022
    Inventors: Neil R. Crawford, Norbert Johnson, Thomas Calloway, Dana Wisniewski
  • Publication number: 20220084298
    Abstract: An augmented reality surgical system includes a head mounted display (HMD) with a see-through display screen, a motion sensor, a camera, and computer equipment. The motion sensor outputs a head motion signal indicating measured movement of the HMD. The computer equipment computes the relative location and orientation of reference markers connected to the HMD and to the patient based on processing a video signal from the camera. The computer equipment generates a three dimensional anatomical model using patient data created by medical imaging equipment, and rotates and scales at least a portion of the three dimensional anatomical model based on the relative location and orientation of the reference markers, and further rotate at least a portion of the three dimensional anatomical model based on the head motion signal to track measured movement of the HMD. The rotated and scaled three dimensional anatomical model is displayed on the display screen.
    Type: Application
    Filed: November 23, 2021
    Publication date: March 17, 2022
    Inventors: Kenneth Milton Jones, John Popoolapade, Thomas Calloway, Thierry Lemoine, Christian Jutteau, Christophe Bruzy, Yannick James, Joachim Laguarda, Dong-Mei Pei Xing, Sebastien Gorges, Paul Michael Yarin
  • Publication number: 20220071729
    Abstract: A virtual model a planned instrument attachment can be provided to ensure correct selection of a physical instrument attachment. An XR headset controller can generate a shape and a pose of the virtual model of the planned instrument attachment based on predetermined information associated with the planned instrument attachment and based on a pose of an instrument relative to the XR headset. An XR headset can display the virtual model on a see-through display screen of the XR headset that is configured to allow at least a portion of a real-world scene to pass therethrough.
    Type: Application
    Filed: November 18, 2021
    Publication date: March 10, 2022
    Inventors: Weston Healy, Thomas Calloway, Norbert Johnson
  • Publication number: 20220061921
    Abstract: A camera tracking system for computer assisted navigation during surgery. The camera tracking system includes a processor operative to receive streams of video frames from tracking cameras which image a plurality of physical objects arranged as a reference array. For each of the physical objects imaged in a sequence of the video frames, that processor determines a set of coordinates for the physical object over the sequence of the video frames. For each of the physical objects, the processor generates an arithmetic combination of the set of coordinates for the physical object. The processor generates an array template identifying coordinates of the physical objects based on the arithmetic combinations of the sets of coordinates for the physical objects, and tracks pose of the physical objects of the reference array over time based on comparison of the array template to the reference array imaged in the streams of video frames.
    Type: Application
    Filed: September 2, 2020
    Publication date: March 3, 2022
    Inventors: Neil R. Crawford, Thomas Calloway
  • Publication number: 20220051484
    Abstract: An augmented reality surgical system includes a head mounted display (HMD) with a see-through display screen, a motion sensor, a camera, and computer equipment. The motion sensor outputs a head motion signal indicating measured movement of the HMD. The computer equipment computes the relative location and orientation of reference markers connected to the HMD and to the patient based on processing a video signal from the camera. The computer equipment generates a three dimensional anatomical model using patient data created by medical imaging equipment, and rotates and scales at least a portion of the three dimensional anatomical model based on the relative location and orientation of the reference markers, and further rotate at least a portion of the three dimensional anatomical model based on the head motion signal to track measured movement of the HMD. The rotated and scaled three dimensional anatomical model is displayed on the display screen.
    Type: Application
    Filed: October 27, 2021
    Publication date: February 17, 2022
    Inventors: Kenneth Milton Jones, John Popoolapade, Thomas Calloway, Thierry Lemoine, Christian Jutteau, Christophe Bruzy, Yannick James, Joachim Laguarda, Dong-Mei Pei Xing, Sebastien Gorges, Paul Michael Yarin
  • Publication number: 20220012949
    Abstract: An augmented reality surgical system includes a head mounted display (HMD) with a see-through display screen, a motion sensor, a camera, and computer equipment. The motion sensor outputs a head motion signal indicating measured movement of the HMD. The computer equipment computes the relative location and orientation of reference markers connected to the HMD and to the patient based on processing a video signal from the camera. The computer equipment generates a three dimensional anatomical model using patient data created by medical imaging equipment, and rotates and scales at least a portion of the three dimensional anatomical model based on the relative location and orientation of the reference markers, and further rotate at least a portion of the three dimensional anatomical model based on the head motion signal to track measured movement of the HMD. The rotated and scaled three dimensional anatomical model is displayed on the display screen.
    Type: Application
    Filed: June 10, 2021
    Publication date: January 13, 2022
    Inventors: Kenneth Milton Jones, John Popoolapade, Thomas Calloway, Thierry Lemoine, Christian Jutteau, Christophe Bruzy, Yannick James, Joachim Laguarda, Dong-Mei Pei Xing, Sebastien Gorges, Paul Michael Yarin
  • Publication number: 20220007006
    Abstract: A head-mounted extended reality (XR) display device includes a rigid mounting element coupled to a frame. The XR display device further includes right-side and left-side visible light cameras coupled to the rigid mounting element, right-side and left-side near-infrared (NIR) cameras coupled to the rigid mounting element, and an NIR light-emitting diode (LED) configured to illuminate a region within a field of view of the NIR cameras. The visible light cameras are configured to capture stereoscopic visible light images within a field of view of the user when the user is wearing the frame, and the NIR cameras are configured to capture stereoscopic NIR images within the field of view of the user when the user is wearing the frame.
    Type: Application
    Filed: September 17, 2021
    Publication date: January 6, 2022
    Inventors: Weston Healy, Thomas Calloway, Norbert Johnson, Keerthighaan Kanagasegar
  • Patent number: 11217028
    Abstract: An augmented reality surgical system includes a head mounted display (HMD) with a see-through display screen, a motion sensor, a camera, and computer equipment. The motion sensor outputs a head motion signal indicating measured movement of the HMD. The computer equipment computes the relative location and orientation of reference markers connected to the HMD and to the patient based on processing a video signal from the camera. The computer equipment generates a three dimensional anatomical model using patient data created by medical imaging equipment, and rotates and scales at least a portion of the three dimensional anatomical model based on the relative location and orientation of the reference markers, and further rotate at least a portion of the three dimensional anatomical model based on the head motion signal to track measured movement of the HMD. The rotated and scaled three dimensional anatomical model is displayed on the display screen.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: January 4, 2022
    Assignee: Globus Medical, Inc.
    Inventors: Kenneth Milton Jones, John Popoolapade, Thomas Calloway, Thierry Lemoine, Christian Jutteau, Christophe Bruzy, Yannick James, Joachim Laguarda, Dong-Mei Pei Xing, Sebastien Gorges, Paul Michael Yarin
  • Patent number: 11207150
    Abstract: A virtual model a planned instrument attachment can be provided to ensure correct selection of a physical instrument attachment. An XR headset controller can generate a shape and a pose of the virtual model of the planned instrument attachment based on predetermined information associated with the planned instrument attachment and based on a pose of an instrument relative to the XR headset. An XR headset can display the virtual model on a see-through display screen of the XR headset that is configured to allow at least a portion of a real-world scene to pass therethrough.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: December 28, 2021
    Assignee: Globus Medical, Inc.
    Inventors: Weston Healy, Thomas Calloway, Norbert Johnson
  • Publication number: 20210386503
    Abstract: A camera tracking system for computer assisted navigation during surgery operatively determines a first pose of a second extended-reality (XR) headset relative to stereo tracking cameras located on a first XR headset based on first tracking information from the stereo tracking cameras. The camera tracking system determines a second pose of eyes of a user wearing the second XR headset relative to the stereo tracking cameras located on the first XR headset based on second tracking information from the stereo tracking cameras. The camera tracking system also calibrates an eye-to-display relationship defining pose of the eyes of the user wearing the second XR headset to a display device of the second XR headset based on the determined first and second poses. The camera tracking system also controls where symbols are displayed on the display device of the second XR headset based on the eye-to-display relationship.
    Type: Application
    Filed: June 16, 2020
    Publication date: December 16, 2021
    Inventors: Weston Healy, Thomas Calloway
  • Publication number: 20210378756
    Abstract: A camera tracking system is disclosed for computer assisted navigation during surgery. The camera tracking system includes a camera bar, first and second tracking cameras, and a third tracking camera. The first and second tracking cameras are attached at spaced apart locations on the camera bar. The third tracking camera is attached at a location on the camera bar that is between locations of the first and second tracking cameras and spaced apart a distance from a line extending through centers of the first and second tracking cameras.
    Type: Application
    Filed: June 9, 2020
    Publication date: December 9, 2021
    Inventors: Thomas Calloway, Norbert Johnson
  • Publication number: 20210378755
    Abstract: A camera tracking bar of a camera tracking system for computer assisted surgery navigation. The camera tracking bar includes a first set of stereo tracking cameras having first resolution, first field of view, and spaced apart on the camera tracking bar by a first baseline distance. The camera tracking bar also includes a second set of stereo tracking cameras having second resolution, second field of view, and spaced apart on the camera tracking bar by a second baseline distance that is less than the first baseline distance. The second set of stereo tracking cameras is positioned between the first set of stereo tracking cameras, and the resolution and/or the field of view of the second set of stereo tracking cameras is different from the resolution and/or the field of view of the first set of stereo tracking cameras. A communication interface provides camera video streams to the camera tracking subsystem.
    Type: Application
    Filed: June 9, 2020
    Publication date: December 9, 2021
    Inventors: Thomas Calloway, Leonid Naimark
  • Patent number: 11176750
    Abstract: An augmented reality surgical system includes a head mounted display (HMD) with a see-through display screen, a motion sensor, a camera, and computer equipment. The motion sensor outputs a head motion signal indicating measured movement of the HMD. The computer equipment computes the relative location and orientation of reference markers connected to the HMD and to the patient based on processing a video signal from the camera. The computer equipment generates a three dimensional anatomical model using patient data created by medical imaging equipment, and rotates and scales at least a portion of the three dimensional anatomical model based on the relative location and orientation of the reference markers, and further rotate at least a portion of the three dimensional anatomical model based on the head motion signal to track measured movement of the HMD. The rotated and scaled three dimensional anatomical model is displayed on the display screen.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: November 16, 2021
    Assignee: Globus Medical, Inc.
    Inventors: Kenneth Milton Jones, John Popoolapade, Thomas Calloway, Thierry Lemoine, Christian Jutteau, Christophe Bruzy, Yannick James, Joachim Laguarda, Dong-Mei Pei Xing, Sebastien Gorges, Paul Michael Yarin