Patents by Inventor Thomas Erik Amthor

Thomas Erik Amthor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11112478
    Abstract: The invention provides for a magnetic resonance imaging system (100) for acquiring MRF magnetic resonance data (144) from a subject (118) within a region of interest (109). The magnetic resonance imaging system comprises a processor (130) for controlling the magnetic resonance imaging system and a memory (134) for storing machine executable instructions (140) and MRF pulse sequence commands (142). The MRF pulse sequence commands are configured for controlling the magnetic resonance imaging system to acquire the MRF magnetic resonance data according to a magnetic resonance fingerprinting protocol.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: September 7, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Peter Boernert, Thomas Erik Amthor, Mariya Ivanova Doneva, Fabian Wenzel
  • Publication number: 20210271777
    Abstract: Some embodiments are directed to a container builder (110) for building a container image for providing an individualized network service based on sensitive data (122) in a database (121). The container builder (110) retrieves the sensitive data (122) from the database (121), builds the container image (140), and provides it for deployment to a cloud service provider (111). The container image (140) comprises the sensitive data (122) and instructions that, when deployed as a container, cause the container to provide the individualized network service based on the sensitive data (122) comprised in the container image (140).
    Type: Application
    Filed: October 22, 2019
    Publication date: September 2, 2021
    Inventors: Thomas Netsch, Thomas Erik Amthor, Jörn Borgert, Michael Günter Helle
  • Patent number: 11092659
    Abstract: A magnetic resonance imaging (MRI) system (100) includes a memory (134) for storing machine executable instructions (140) and magnetic resonance fingerprinting (MRF) pulse sequence commands (142) which cause the MRI system to acquire MRF magnetic resonance data (144) according to an MRF protocol. The pulse sequence commands are configured for acquiring the MRF magnetic resonance data in two-dimensional slices (410, 412, 414, 416, 418, 420), having a slice selection direction. A train of pulse sequence repetitions includes a sampling event where the MRF data is repeatedly sampled.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: August 17, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Thomas Erik Amthor, Mariya Ivanova Doneva, Karsten Sommer, Peter Koken
  • Patent number: 11085985
    Abstract: A magnetic resonance imaging (MRI) system includes a memory for storing machine executable instructions and MRF pulse sequence commands. The MRF pulse sequence commands are configured for controlling the MRI system to acquire MRF magnetic resonance data according to a magnetic resonance fingerprinting protocol. The memory further includes a Fourier transformed magnetic resonance finger printing dictionary. The finger printing dictionary includes entries for at least one intrinsic property.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: August 10, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Karsten Sommer, Thomas Erik Amthor, Jan Jakob Meineke, Peter Koken, Mariya Ivanova Doneva
  • Publication number: 20210224403
    Abstract: A non-transitory storage medium stores instructions readable and executable by a first computer (14) to perform an image processing method (100, 200, 400). The method includes: encrypting image data portions to generate encrypted image data portions; transmitting the encrypted image data portions from the first computer to a second server (16) different from the first computer; decrypting encrypted processed image data portions received at the first computer from the second server to produce processed image data portions and generating a processed image from the processed image data portions; and controlling a display device (24) to display the processed image or storing the processed image in a database (30).
    Type: Application
    Filed: June 11, 2019
    Publication date: July 22, 2021
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventor: Thomas Erik AMTHOR
  • Publication number: 20210215776
    Abstract: It is an object of the invention to increase the predictability of the MRI exam for the patients. This object is achieved by a method for classifying sound of a magnetic resonance imaging sequence into a sound category, wherein the magnetic resonance sequence comprises a one or more sound blocks, wherein individual sound blocks have signal characteristics and wherein sound blocks having similar characteristics are to be classified into the same sound category, the method comprising the steps of: —receiving information about one or more gradient waveforms to be used in the magnetic resonance imaging sequence and; —using a classification algorithm to map the waveform information to a sound category and; —allocating a visual to the sound category.
    Type: Application
    Filed: May 27, 2019
    Publication date: July 15, 2021
    Inventors: THOMAS ERIK AMTHOR, ANNERIEKE HEUVELINK-MARCK, RON DOTSCH, SANNE NAUTS, PRIVENDER KAUR SAINI, OZGUR TASAR
  • Patent number: 11041925
    Abstract: A processor controls an MRI system with pulse sequence commands to acquire magnetic resonance data according to a magnetic resonance fingerprinting protocol during multiple pulse repetitions. The pulse sequence commands control the magnetic resonance imaging system to cause gradient induced spin rephasing at least twice during each of the multiple pulse repetitions, and to acquire at least two magnetic resonance signals during each of the multiple pulse repetitions. Each of the at least two magnetic resonance signals is measured during a separate one of the gradient induced spin rephasing. The magnetic resonance data includes the at least two magnetic resonance signals acquired during each of the multiple pulse repetitions. The processor further at least partially calculates a B0-off-resonance map using the magnetic resonance data, and generates at least one magnetic resonance parametric map by comparing the magnetic resonance data with a magnetic resonance fingerprinting dictionary.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: June 22, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Jan Jakob Meineke, Thomas Erik Amthor, Peter Koken, Karsten Sommer
  • Publication number: 20210142895
    Abstract: An apparatus provides assistance by a remote operator to a local operator of a medical imaging device (2) disposed in a medical imaging device bay (3) via a communication link (14) from a remote service center (4) to the medical imaging device bay. The apparatus includes a workstation (12) disposed in the remote service center including at least one workstation display (24).
    Type: Application
    Filed: November 10, 2020
    Publication date: May 13, 2021
    Inventors: Joachim Dieter SCHMIDT, Thomas Erik AMTHOR
  • Publication number: 20210118554
    Abstract: The present disclosure relates to a medical imaging method for enabling magnetic resonance imaging of a subject (318) using a set of imaging parameters of imaging protocols, the method comprising: receiving information related to the subject; using a predefined machine learning model for suggesting at least one imaging protocol for the received information, wherein the imaging protocol comprises at least part of the set of imaging parameters and associated values; providing the imaging protocol.
    Type: Application
    Filed: June 19, 2019
    Publication date: April 22, 2021
    Inventors: THOMAS ERIK AMTHOR, LIQIN WANG, CHENGUANG ZHAO, JOACHIM DIETER SCHMIDT, JORN BORGERT, YAJING ZHANG, INGMAR GRAESSLIN, TANJA NORDHOFF
  • Publication number: 20210109180
    Abstract: The invention provides for a magnetic resonance imaging system (100) for acquiring MRF magnetic resonance data (144) from a subject (118) within a region of interest (109). The magnetic resonance imaging system comprises a processor (130) for controlling the magnetic resonance imaging system and a memory (134) for storing machine executable instructions (140) and MRF pulse sequence commands (142). The MRF pulse sequence commands are configured for controlling the magnetic resonance imaging system to acquire the MRF magnetic resonance data according to a magnetic resonance fingerprinting protocol.
    Type: Application
    Filed: March 30, 2018
    Publication date: April 15, 2021
    Inventors: PETER BOERNERT, THOMAS ERIK AMTHOR, MARIYA IVANOVA DONEVA, FABIAN WENZEL
  • Patent number: 10939876
    Abstract: A magnetic resonance (MR) system (10) for guidance of a shaft or needle (16) to a target (14) of a subject (12) is provided. The system includes a user interface (76). The user interface (76) includes a frame (78) positioned on a surface of the subject (12). The frame (78) includes an opening (82) over an entry point of a planned trajectory for the shaft or needle (16). The planned trajectory extends from the entry point to the target (14). The user interface (76) further includes one or more visual indicators (80) arranged on the frame (78) around the opening (82). The one or more visual indicators (80) at least one of: 1) visually indicate deviation of the shaft or needle (16) from the planned trajectory; and 2) visually indicate a current position of a real-time slice of real-time MR images.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: March 9, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Steffen Weiss, Thomas Erik Amthor, Sascha Krueger, Daniel Wirtz, Falk Uhlemann
  • Publication number: 20210050092
    Abstract: Various embodiments of the inventions of the present disclosure a systematic framework of matrices constructed as a basis for a centralized control of assigning imaging operators to operate imaging systems (11) in accordance with a plurality of scheduled imaging examinations.
    Type: Application
    Filed: March 14, 2019
    Publication date: February 18, 2021
    Inventors: Carsten Oliver Schirra, Tanja Nordhoff, Thomas Erik Amthor
  • Publication number: 20210003650
    Abstract: The invention provides for a medical imaging system comprising: a memory for storing machine executable instructions; a processor for controlling the medical instrument. Execution of the machine executable instructions causes the processor to: receive MRF magnetic resonance data acquired according to an MRF magnetic resonance imaging protocol of a region of interest; reconstruct an MRF vector for each voxel of a set of voxels descriptive of the region of interest using the MRF magnetic resonance data according to the MRF magnetic resonance imaging protocol; calculate a preprocessed MRF vector (126) for each of the set of voxels by applying a predetermined preprocessing routine to the MRF vector for each voxel, wherein the predetermined preprocessing routine comprises normalizing the preprocessed MRF vector for each voxel; calculate an outlier map for the set of voxels by assigning an outlier score to the preprocessed MRF vector using a machine learning algorithm.
    Type: Application
    Filed: September 22, 2020
    Publication date: January 7, 2021
    Inventors: Thomas Erik AMTHOR, Mariya Ivanova DONEVA, Jan Jakob MEINEKE
  • Publication number: 20200355769
    Abstract: The present invention provides a radiation shield (204), in particular for shielding main coils (202) of a magnetic resonance imaging system (110), whereby the radiation shield (204) comprises a cavity (214) for housing at least one main coil (202), whereby the cavity (214) is formed between an inner cylindrical wall (206), an outer cylindrical wall (208), which are arranged essentially concentrically to each other, and two ring-shaped base walls (212), which interconnect the inner cylindrical wall (206) and the outer cylindrical wall (208), wherein at least one out of the inner cylindrical wall (206), the outer cylindrical wall (208), and the two ring-shaped base walls (212) is provided at least partially with an inner layer (216), which faces the cavity (214), and an outer layer (218), wherein the inner layer (216) is a layer comprising carbon fiber reinforced plastic, and the outer layer (218) comprises a metal, which is paramagnetic or diamagnetic.
    Type: Application
    Filed: April 25, 2017
    Publication date: November 12, 2020
    Applicant: Koninklijke N.V.
    Inventors: Thomas Erik AMTHOR, Christoph LEUSSLER
  • Patent number: 10816625
    Abstract: The invention provides for a magnetic resonance imaging system (100) for acquiring magnetic resonance data (142) from a subject (118) within an imaging zone (108). The magnetic resonance imaging system comprises a memory (134, 136) for storing machine executable instructions (160), and pulse sequence commands (140, 400, 502, 600, 700), wherein the pulse sequence commands are configured to cause the magnetic imaging resonance system to acquire the magnetic resonance data according to a magnetic resonance fingerprinting technique. The pulse sequence commands are further configured to control the magnetic resonance imaging system to perform spatial encoding using a zero echo time magnetic resonance imaging protocol.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: October 27, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Peter Bornert, Kay Nehrke, Mariya Ivanova Doneva, Thomas Erik Amthor, Peter Koken, George Randall Duensing
  • Patent number: 10794976
    Abstract: A method of employing a central computer database (18) for supporting a characterization of tissue by magnetic resonance fingerprinting measurements, includes: exciting nuclei of a subject of interest by applying (50) a radio frequency excitation field B1 generated according to a magnetic resonance fingerprinting sequence (38), acquiring (52) magnetic resonance imaging signal data from radiation emitted by excited nuclei of the subject of interest, transferring (54) a magnetic resonance fingerprinting data set (42) to the central computer database (18), retrieving (56) a predefined dictionary from the central computer database (18), matching (60) the acquired magnetic resonance imaging signal data to the retrieved dictionary by applying a pattern recognition algorithm to determine a value (40) or a set of values (40) for at least one physical quantity (T1, T2), adding (62) at least the determined value (40) or the determined set of values (40) as a new entry of an associated medical data set (36) to the centr
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: October 6, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Thomas Erik Amthor, Sascha Krueger, Mariya Ivanova Donevea, Peter Koken, Julien Senegas, Jochen Keupp, Peter Boernert
  • Patent number: 10788556
    Abstract: A magnetic resonance imaging system (100) acquires magnetic resonance data (142) from a subject (118) within a measurement zone (108). Pulse sequence commands (140) control the magnetic resonance imaging system to acquire the magnetic resonance data according to a magnetic resonance fingerprinting protocol. The pulse sequence commands are configured for controlling the magnetic resonance imaging system to repeatedly generate an RF pulse train (300) and acquire the magnetic resonance data as multiple k-space traces. The machine executable instructions causes the processor to: sequentially acquire (200) the multiple k-space traces of magnetic resonance data by controlling the magnetic resonance imaging system with pulse sequence commands and calculate (202) the abundance of each of a set of predetermined substances for k-space traces that are acquired after a predetermined number of k-space traces of the multiple k-space traces has been acquired and the acquired magnetization has reached a steady state.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: September 29, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Thomas Erik Amthor, Peter Koken, Karsten Sommer, Mariya Ivanova Doneva, Peter Boernert
  • Publication number: 20200279640
    Abstract: An imaging system (10) includes: an image acquisition device (12), a device controller (16) comprising an electronic processor (20) programmed to operate the image acquisition device to acquire medical images of a patient and to maintain a machine log (26) storing an operating history of the image acquisition device; a server computer (34) programmed to retrieve patient information from at least one health information system (HIS) (18); and at least one feedback device (50, 52). The device controller, the server computer, or a combination of the device controller and server computer is programmed to implement at least one state machine (30, 44) having a plurality of states defined by values of state variables wherein the states represent respective attainable states of an image acquisition procedure (100) and the image acquisition device.
    Type: Application
    Filed: September 25, 2018
    Publication date: September 3, 2020
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Thomas Erik AMTHOR, Tanja NORDHOFF, Joachim SCHMIDT, Joern BORGERT, Ingmar GRAESSLIN
  • Publication number: 20200203002
    Abstract: The invention provides for a medical imaging system (100) for acquiring medical image data (144) from an imaging zone (108). The medical imaging system comprises a memory (134) for storing machine executable instructions (140) and medical imaging system commands (142). The medical imaging system commands are configured for controlling the medical imaging system to acquire the medical image data according to a medical imaging protocol. The medical imaging system further comprises a user interface (132). The medical imaging system further comprises a processor (130) for controlling the medical imaging system.
    Type: Application
    Filed: August 28, 2018
    Publication date: June 25, 2020
    Inventors: THOMAS ERIK AMTHOR, JÖRN BORGERT, JOACHIM SCHMIDT, INGMAR GRAESSLIN, EBERHARD SEBASTIAN HANSIS, THOMAS NETSCH
  • Publication number: 20200166596
    Abstract: The invention relates to a magnetic resonance imaging system (100, 400) comprising a memory (134) for storing machine executable instructions (140) and MRF pulse sequence commands (142). The MRF pulse sequence commands are configured for controlling the magnetic resonance imaging system to acquire MRF magnetic resonance data (144) according to a magnetic resonance fingerprinting protocol. The memory further contains a Fourier transformed magnetic resonance finger printing dictionary (150). The Fourier transformed magnetic resonance finger printing dictionary comprises entries for at least one intrinsic property (152). The magnetic resonance imaging system further comprises a processor (130) for controlling the magnetic resonance imaging system.
    Type: Application
    Filed: July 3, 2018
    Publication date: May 28, 2020
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Karsten Sommer, Thomas Erik Amthor, Jan Jakob Meineke, Peter Koken, Mariya Ivanova Doneva