Patents by Inventor Thomas Erik Amthor

Thomas Erik Amthor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10290098
    Abstract: An interventional therapy system may include at least one controller which may obtain a reference image dataset of an object of interest (OOI); segment the reference image dataset to determine peripheral outlines of the OOI in the plurality image slices; acquire a current image of the OOI using an ultrasound probe; select a peripheral outline of a selected image slice of the plurality of slices of the reference image dataset which is determined to correspond to the current image; and/or modify the selected peripheral outline of the image slice of the plurality of slices of the reference image dataset in accordance with at least one deformation vector.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: May 14, 2019
    Assignees: Koninklijke Philips N.V., Sunnybrook Research Institute
    Inventors: Shyam Bharat, Ehsan Dehghan Marvast, Jochen Kruecker, Ananth Ravi, Falk Uhlemann, Cynthia Ming-Fu Kung, Thomas Erik Amthor
  • Patent number: 10251579
    Abstract: A medical apparatus (1100) comprising a magnetic resonance imaging system and an interventional device (300) comprising a shaft (302, 1014, 1120). The medical apparatus further comprises a toroidal magnetic resonance fiducial marker (306, 600, 800, 900, 1000, 1122) attached to the shaft. The shaft passes through a center point (610, 810, 908, 1006) of the fiducial marker. The medical apparatus further comprises machine executable instructions (1150, 1152, 1154, 1156, 1158) for execution by a processor. The instructions cause the processor to acquire (100, 200) magnetic resonance data, to reconstruct (102, 202) a magnetic resonance image (1142), and to receive (104, 204) the selection of a target volume (1118, 1144, 1168). The instructions further cause the processor to repeatedly: acquire (106, 206) magnetic resonance location data (1146) from the fiducial marker and render (108, 212) a view (1148, 1162) indicating the position of the shaft relative to the target zone.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: April 9, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Steffen Weiss, Ronaldus Frederik Johannes Holthuizen, Sascha Krueger, Peter Koken, Daniel Wirtz, Thomas Erik Amthor, Falk Uhlemann
  • Patent number: 10245447
    Abstract: The invention provides for a medical apparatus (200, 300, 400) comprising: a magnetic resonance imaging system (202), a display (270), a processor (228), and a memory (234) for storing instructions for the processor. The instructions causes the processor to receive a brachytherapy treatment plan (240), acquire (100) planning magnetic resonance data (244), calculate (102) a catheter placement positions (246, 900, 902) and a catheter control commands (248) the brachytherapy catheters.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: April 2, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: Thomas Erik Amthor, Falk Uhlemann, Sascha Krueger, Steffen Weiss, Ronaldus Frederik Johannes Holthuizen, Daniel Wirtz, Peter Koken
  • Publication number: 20190033413
    Abstract: The invention provides for a magnetic resonance imaging system (100) for acquiring magnetic resonance data (142) from a subject (118) within a measurement zone (108), wherein the magnetic resonance imaging system comprises: a processor (130) for controlling the magnetic resonance imaging system and a memory (136) for storing machine executable instructions (150, 152, 154) and pulse sequence commands (140). The pulse sequence commands for controlling the magnetic resonance imaging system to acquire the magnetic resonance data according to a magnetic resonance fingerprinting protocol. The pulse sequence commands are configured for controlling the magnetic resonance imaging system to generate an RF pulse train (300). The pulse sequence commands are configured for controlling the magnetic resonance imaging system to acquire the magnetic resonance data as multiple k-space traces.
    Type: Application
    Filed: February 6, 2017
    Publication date: January 31, 2019
    Applicant: Koninklijke Philips N.V.
    Inventors: Thomas Erik AMTHOR, Peter KOKEN, Karsten SOMMER, Mariya Ivanova DONEVA, Peter BOERNERT
  • Publication number: 20190027243
    Abstract: A system and method are provided for generating a predictive model for use in optimizing a clinical workflow. The predictive model may be generated as follows. Workflow metadata is obtained which is indicative of the clinical workflow. A viewer log is obtained of an image viewer used by a physician to review one or more medical images. The viewer log may be indicative of one or more viewing actions performed by the physician using the image viewer. A diagnostic value of the one or more medical images is then estimated based on the viewing actions. The above steps are performed for different clinical workflows. A machine learning technique is then applied to the resulting plurality of diagnostic values and plurality of workflow metadata to generate the predictive model. The generated predictive model is predictive of the diagnostic value of medical images acquired by a particular clinical workflow given the workflow metadata of the particular clinical workflow.
    Type: Application
    Filed: January 24, 2017
    Publication date: January 24, 2019
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Thomas Erik AMTHOR, Julien SÉNÉGAS, Thomas Heiko STEHLE, Eberhard Sebastian HANSIS
  • Patent number: 10132897
    Abstract: A magnetic resonance imaging system (302) includes a magnet (306) for generating the magnetic field within an imaging zone 318. The magnet generates a magnetic field with a zero crossing (346, 404) outside of the imaging zone. The medical apparatus further includes a gantry (332) configured for rotating a ferromagnetic component (336, 510) about a rotational axis (333). A magnetic correcting element (348, 900, 1000) is located on a radial path (344, 504) perpendicular to the rotational axis. The magnetic correcting element is positioned on the radial path such that change in the magnetic field within the imaging zone due to the ferromagnetic component is reduced.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: November 20, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Thomas Erik Amthor, Johannes Adrianus Overweg
  • Publication number: 20180160934
    Abstract: A medical apparatus (1100) comprising a magnetic resonance imaging system and an interventional device (300) comprising a shaft (302, 1014, 1120). The medical apparatus further comprises a toroidal magnetic resonance fiducial marker (306, 600, 800, 900, 1000, 1122) attached to the shaft. The shaft passes through a center point (610, 810, 908, 1006) of the fiducial marker. The medical apparatus further comprises machine executable instructions (1150, 1152, 1154, 1156, 1158) for execution by a processor. The instructions cause the processor to acquire (100, 200) magnetic resonance data, to reconstruct (102, 202) a magnetic resonance image (1142), and to receive (104, 204) the selection of a target volume (1118, 1144, 1168). The instructions further cause the processor to repeatedly: acquire (106, 206) magnetic resonance location data (1146) from the fiducial marker and render (108, 212) a view (1148, 1162) indicating the position of the shaft relative to the target zone.
    Type: Application
    Filed: January 19, 2018
    Publication date: June 14, 2018
    Inventors: Steffen Weiss, Ronaldus Frederik Johannes Holthuizen, Sascha Krueger, Peter Koken, Daniel Wirtz, Thomas Erik Amthor, Alk Uhlemann
  • Patent number: 9968277
    Abstract: A medical apparatus (1100) comprising a magnetic resonance imaging system and an interventional device (300) comprising a shaft (302, 1014, 1120). The medical apparatus further comprises a toroidal magnetic resonance fiducial marker (306, 600, 800, 900, 1000, 1122) attached to the shaft. The shaft passes through a center point (610, 810, 908, 1006) of the fiducial marker. The medical apparatus further comprises machine executable instructions (1150, 1152, 1154, 1156, 1158) for execution by a processor. The instructions cause the processor to acquire (100, 200) magnetic resonance data, to reconstruct (102, 202) a magnetic resonance image (1142), and to receive (104, 204) the selection of a target volume (1118, 1144, 1168). The instructions further cause the processor to repeatedly: acquire (106, 206) magnetic resonance location data (1146) from the fiducial marker and render (108, 212) a view (1148, 1162) indicating the position of the shaft relative to the target zone.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: May 15, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Steffen Weiss, Ronaldus Frederik Johannes Holthuizen, Sascha Krueger, Peter Koken, Daniel Wirtz, Thomas Erik Amthor, Falk Uhlemann
  • Patent number: 9891298
    Abstract: The invention provides for magnetic resonance imaging system (600) comprising a superconducting magnet (100) with a first current lead (108) and a second current lead (110) for connecting to a current ramping system (624). The magnet further comprises a vacuum vessel (104) penetrated by the first current lead and the second current lead. The magnet further comprises a magnet circuit (106) within the vacuum vessel. The magnet circuit has a first magnet circuit connection (132) and a second magnet circuit connection (134). The magnet further comprises a first switch (120) between the first magnet connection and the first current lead and a second switch (122) between the second magnet connection and the second current lead. The magnet further comprises a first current shunt (128) connected across the first switch and a second current shunt (130) connected across the second switch. The magnet further comprises a first rigid coil loop (124) operable to actuate the first switch.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: February 13, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Johannes Adrianus Overweg, Thomas Erik Amthor, Peter Forthmann, Falk Uhlemann, Bernd David
  • Publication number: 20180003789
    Abstract: A method of correcting a magnetic field of a medical apparatus (300) comprising a magnetic resonance imaging system (302). The MRI system includes a magnet (306) for generating the magnetic field within an imaging zone 318. The magnet generates a magnetic field with a zero crossing (346, 404) outside of the imaging zone. The medical apparatus further comprises a gantry (332) configured for rotating a ferromagnetic component (336, 510) about a rotational axis (333). The method comprises the step of installing (100, 200) a magnetic correcting element (348, 900, 1000) located on a radial path (344, 504) perpendicular to the rotational axis. The magnetic correcting element is positioned on the radial path such that change in the magnetic field within the imaging zone due to the ferromagnetic component is reduced.
    Type: Application
    Filed: May 19, 2017
    Publication date: January 4, 2018
    Inventors: Thomas Erik Amthor, Johannes Adrianus Overweg
  • Publication number: 20170356970
    Abstract: The invention provides for magnetic resonance imaging system (600) comprising a superconducting magnet (100) with a first current lead (108) and a second current lead (110) for connecting to a current ramping system (624). The magnet further comprises a vacuum vessel (104) penetrated by the first current lead and the second current lead. The magnet further comprises a magnet circuit (106) within the vacuum vessel. The magnet circuit has a first magnet circuit connection (132) and a second magnet circuit connection (134). The magnet further comprises a first switch (120) between the first magnet connection and the first current lead and a second switch (122) between the second magnet connection and the second current lead. The magnet further comprises a first current shunt (128) connected across the first switch and a second current shunt (130) connected across the second switch. The magnet further comprises a first rigid coil loop (124) operable to actuate the first switch.
    Type: Application
    Filed: August 28, 2017
    Publication date: December 14, 2017
    Inventors: Johannes Adrianus Overweg, Thomas Erik Amthor, Peter Forthmann, Falk Uhlemann, Bernd David
  • Patent number: 9746533
    Abstract: The invention provides for magnetic resonance imaging system (600) comprising a superconducting magnet (100) with a first current lead (108) and a second current lead (110) for connecting to a current ramping system (624). The magnet further comprises a vacuum vessel (104) penetrated by the first current lead and the second current lead. The magnet further comprises a magnet circuit (106) within the vacuum vessel. The magnet circuit has a first magnet circuit connection (132) and a second magnet circuit connection (134). The magnet further comprises a first switch (120) between the first magnet connection and the first current lead and a second switch (122) between the second magnet connection and the second current lead. The magnet further comprises a first current shunt (128) connected across the first switch and a second current shunt (130) connected across the second switch. The magnet further comprises a first rigid coil loop (124) operable to actuate the first switch.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: August 29, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Johannes Adrianus Overweg, Thomas Erik Amthor, Peter Forthmann, Falk Uhlemann, Bernd David
  • Patent number: 9664763
    Abstract: A method of correcting a magnetic field of an MRI radiotherapy apparatus (300) includes a magnetic resonance imaging system (302) and a radiation therapy system (304). The MRI system includes a magnet (306) for generating the magnetic field within an imaging zone 318. The magnet generates a magnetic field with a zero crossing (346, 404) outside of the imaging zone. The medical apparatus further comprises a gantry (332) configured for rotating a ferromagnetic component (336, 510) about a rotational axis (333). The method comprises the step of installing (100, 200) a magnetic correcting element (348, 900, 1000) located on a radial path (344, 504) perpendicular to the rotational axis. The magnetic correcting element is positioned on the radial path such that change in the magnetic field within the imaging zone due to the ferromagnetic component is reduced.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: May 30, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Thomas Erik Amthor, Johannes Adrianus Overweg
  • Publication number: 20150174427
    Abstract: A medical device for multiple treatment therapies includes a hollow tube (102) having a first end portion with an electrode (104) disposed at the first end portion and an insulator (108) configured over a length of the tube such that conductive materials of the tube, except for the electrode, are electrically isolated from an exterior surface the tube. A conductive connection (127) is configured to electrically couple to the electrode to provide a voltage thereto. A selectively closeable valve (106) is configured to dispense a medical fluid from the tube.
    Type: Application
    Filed: July 23, 2013
    Publication date: June 25, 2015
    Inventors: Thomas Erik Amthor, Sascha Krueger, Steffen Weiss, Falk Uhlemann
  • Publication number: 20150148660
    Abstract: A magnetic resonance (MR) system (10) for guidance of a shaft or needle (16) to a target (14) of a subject (12) is provided. The system includes a user interface (76). The user interface (76) includes a frame (78) positioned on a surface of the subject (12). The frame (78) includes an opening (82) over an entry point of a planned trajectory for the shaft or needle (16). The planned trajectory extends from the entry point to the target (14). The user interface (76) further includes one or more visual indicators (80) arranged on the frame (78) around the opening (82). The one or more visual indicators (80) at least one of: 1) visually indicate deviation of the shaft or needle (16) from the planned trajectory; and 2) visually indicate a current position of a real-time slice of real-time MR images.
    Type: Application
    Filed: June 20, 2013
    Publication date: May 28, 2015
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Steffen Weiss, Thomas Erik Amthor, Sascha Krueger, Daniel Wirtz, Falk Uhlemann
  • Publication number: 20150045226
    Abstract: The invention provides for magnetic resonance imaging system (600) comprising a superconducting magnet (100) with a first current lead (108) and a second current lead (110) for connecting to a current ramping system (624). The magnet further comprises a vacuum vessel (104) penetrated by the first current lead and the second current lead. The magnet further comprises a magnet circuit (106) within the vacuum vessel. The magnet circuit has a first magnet circuit connection (132) and a second magnet circuit connection (134). The magnet further comprises a first switch (120) between the first magnet connection and the first current lead and a second switch (122) between the second magnet connection and the second current lead. The magnet further comprises a first current shunt (128) connected across the first switch and a second current shunt (130) connected across the second switch. The magnet further comprises a first rigid coil loop (124) operable to actuate the first switch.
    Type: Application
    Filed: January 14, 2013
    Publication date: February 12, 2015
    Inventors: Johannes Adrianus Overweg, Thomas Erik Amthor, Peter Forthmann, Falk Uhlemann, Bernd David
  • Publication number: 20140316249
    Abstract: A miniature X-ray source (10) for high dose rate brachytherapy that can be operated in a wide range of operating directions (76) in the presence of a strong magnetic field (B), such as, for instance, the static magnetic field (B) of an MR scanner, with at least one anode (12) and at least one cathode (14), wherein in an operative state, an electric field (18) between the anode (12) and the cathode (14) is essentially spherically symmetric in at least a continuous solid angle of more than ?/2 sr about a center (16) of the cathode (14); a brachytherapy system, comprising at least one said miniature X-ray source (10), and a method for generating a beam (82) of X-ray radiation inside an outer magnetic field (B) or an operative MR scanner with said miniature X-ray source (10).
    Type: Application
    Filed: November 6, 2012
    Publication date: October 23, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Thomas Erik Amthor, Steffen Weiss, Johannes Adrianus Overweg
  • Publication number: 20140303423
    Abstract: The invention provides for a medical apparatus (200, 300, 400) comprising: a magnetic resonance imaging system (202), a display (270), a processor (228), and a memory (234) for storing instructions for the processor. The instructions causes the processor to receive a brachytherapy treatment plan (240), acquire (100) planning magnetic resonance data (244), calculate (102) a catheter placement positions (246, 900, 902) and a catheter control commands (248) the brachytherapy catheters.
    Type: Application
    Filed: September 25, 2012
    Publication date: October 9, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Thomas Erik Amthor, Falk Uhlemann, Sascha Krueger, Steffen Weiss, Ronaldus Frederik Johannes Holthuizen, Daniel Wirtz, Peter Kokenm
  • Publication number: 20140128721
    Abstract: A medical imaging system comprises an image data acquisition module to acquire imaging data and a motion detection module to acquire motion information. A reconstruction module reconstructs image datasets from the imaging data and with use of the motion information to correct for motion. The motion detection module is provided with a shape-sensing photonic fibre system to provide a photonic output representative of the spatial shape of the photonic fibre and an arithmetic unit to compute the motion information on the basis of the photonic output.
    Type: Application
    Filed: June 6, 2012
    Publication date: May 8, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Peter Forthmann, Thomas Erik Amthor, Sascha Krueger, Michael Harald Kuhn
  • Publication number: 20140084926
    Abstract: A method of correcting a magnetic field of an MRI radiotherapy apparatus (300) comprising a magnetic resonance imaging system (302) and a radiation therapy system (304). The MRI system includes a magnet (306) for generating the magnetic field within an imaging zone 318. The magnet generates a magnetic field with a zero crossing (346, 404) outside of the imaging zone. The medical apparatus further comprises a gantry (332) configured for rotating a ferromagnetic component (336, 510) about a rotational axis (333). The method comprises the step of installing (100, 200) a magnetic correcting element (348, 900, 1000) located on a radial path (344, 504) perpendicular to the rotational axis. The magnetic correcting element is positioned on the radial path such that change in the magnetic field within the imaging zone due to the ferromagnetic component is reduced.
    Type: Application
    Filed: May 31, 2012
    Publication date: March 27, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Thomas Erik Amthor, Johannes Adrianus Overweg