Patents by Inventor Thomas Fuchs

Thomas Fuchs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230360354
    Abstract: The present disclosure is directed to systems and methods for identifying regions of interest (ROIs) in images. A computing system may identify an image including an annotation defining an ROI. The image may have a plurality of pixels in a first color space. The computing system may convert the plurality of pixels from the first color space to a second color space to differentiate the annotation from the ROI. The computing system may select a first subset of pixels corresponding to the annotation based at least on a color value of the first subset of pixels in the second color space. The computing system may identify a second subset of pixels included in the ROI from the image using the first subset of pixels. The computing system may store an association between the second subset of pixels and the ROI defined by the annotation in the image.
    Type: Application
    Filed: May 11, 2023
    Publication date: November 9, 2023
    Applicant: MEMORIAL SLOAN KETTERING CANCER CENTER
    Inventors: Thomas Fuchs, Peter J. Schüffler, Dig Vijay Kumar Yarlagadda, Chad Vanderbilt
  • Patent number: 11810677
    Abstract: The present disclosure is directed to systems and methods for classifying biomedical images. A feature classifier may generate a plurality of tiles from a biomedical image. Each tile may correspond to a portion of the biomedical image. The feature classifier may select a subset of tiles from the plurality of tiles by applying an inference model. The subset of tiles may have highest scores. Each score may indicate a likelihood that the corresponding tile includes a feature indicative of the presence of the condition. The feature classifier may determine a classification result for the biomedical image by applying an aggregation model. The classification result may indicate whether the biomedical includes the presence or lack of the condition.
    Type: Grant
    Filed: November 10, 2022
    Date of Patent: November 7, 2023
    Assignee: Memorial Sloan-Kettering Cancer Center
    Inventors: Thomas Fuchs, Gabriele Campanella
  • Patent number: 11776235
    Abstract: The present disclosure discusses systems and methods to detect blur in digital images. The solution can be incorporated into the quality control systems of pathology and other slide scanners or can be a stand-alone solution. The solution can identify scanned images that include blur and cause the scanner to automatically rescan the blurry image. The solution can also identify regions of the scanned image that include blur. The solution can generate blur maps for each of the scanned images that identify regions of the scanned image that include blur.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: October 3, 2023
    Assignee: Memorial Sloan-Kettering Cancer Center
    Inventors: Gabriele Campanella, Peter J. Schüffler, Thomas Fuchs
  • Patent number: 11776681
    Abstract: An image processing method including identifying, using a machine learning system, an area of interest of a target image by analyzing features extracted from image regions in the target image, the machine learning system being generated by processing a plurality of training images each comprising an image of human tissue and a diagnostic label characterizing at least one of a slide morphology, a diagnostic value, and a pathologist review outcome; determining, using the machine learning system, a probability of a target feature being present in the area of interest of the target image based on an average probability; determining, using the machine learning system, a prioritization value, of a plurality of prioritization values, of the target image based on the probability of the target feature being present in the target image.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: October 3, 2023
    Assignee: Paige.AI, Inc.
    Inventors: Ran Godrich, Jillian Sue, Leo Grady, Thomas Fuchs
  • Patent number: 11741604
    Abstract: Systems and methods are disclosed for receiving a target electronic image corresponding to a target specimen, the target specimen comprising a tissue sample of a patient, applying a machine learning system to the target electronic image to identify a region of interest of the target specimen and determine an expression level of, category of, and/or presence of a biomarker in the region of interest, the biomarker comprising at least one from among an epithelial growth factor receptor (EGFR) biomarker and/or a DNA mismatch repair (MMR) deficiency biomarker, the machine learning system having been generated by processing a plurality of training images to predict whether a region of interest is present in the target electronic image, the training images comprising images of human tissue and/or images that are algorithmically generated, and outputting the determined expression level of, category of, and/or presence of the biomarker in the region of interest.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: August 29, 2023
    Assignee: Paige.AI, Inc.
    Inventors: Supriya Kapur, Ran Godrich, Christopher Kanan, Thomas Fuchs, Leo Grady
  • Publication number: 20230268059
    Abstract: Systems and methods are disclosed for determining at least one geographic region of a plurality of geographic regions, at least one data variable, and/or at least one health variable, estimating a current prevalence of a data variable in a geographic region of the plurality of geographic regions, determining a trend in a relationship between the data variable and the geographic region at a current time, determining a second trend in the relationship between the data variable and the geographic region at at least one prior point in time, determining if the trend in the relationship is irregular within a predetermined threshold with respect to the second trend from the at least one prior point in time, and, upon determining that the trend in the relationship is irregular within a predetermined threshold, generating an alert.
    Type: Application
    Filed: May 2, 2023
    Publication date: August 24, 2023
    Inventors: Christopher KANAN, Rodrigo CEBALLOS LENTINI, Jillian SUE, Thomas FUCHS, Leo GRADY
  • Publication number: 20230252807
    Abstract: The present application relates generally to identifying regions of interest in images, including but not limited to whole slide image region of interest identification, prioritization, de-duplication, and normalization via interpretable rules, nuclear region counting, point set registration, and histogram specification color normalization. This disclosure describes systems and methods for analyzing and extracting regions of interest from images, for example biomedical images depicting a tissue sample from biopsy or ectomy. Techniques directed to quality control estimation, granular classification, and coarse classification of regions of biomedical images are described herein. Using the described techniques, patches of images corresponding to regions of interest can be extracted and analyzed individually or in parallel to determine pixels correspond to features of interest and pixels that do not.
    Type: Application
    Filed: April 18, 2023
    Publication date: August 10, 2023
    Inventors: Andrew Schaumberg, Thomas Fuchs
  • Publication number: 20230245309
    Abstract: Systems and methods are disclosed for receiving a target electronic image corresponding to a target specimen, the target specimen comprising a tissue sample of a patient, applying a machine learning system to the target electronic image to identify a region of interest of the target specimen and determine an expression level of, category of, and/or presence of a biomarker in the region of interest, the biomarker comprising at least one from among an epithelial growth factor receptor (EGFR) biomarker and/or a DNA mismatch repair (MMR) deficiency biomarker, the machine learning system having been generated by processing a plurality of training images to predict whether a region of interest is present in the target electronic image, the training images comprising images of human tissue and/or images that are algorithmically generated, and outputting the determined expression level of, category of, and/or presence of the biomarker in the region of interest.
    Type: Application
    Filed: April 4, 2023
    Publication date: August 3, 2023
    Inventors: Supriya KAPUR, Ran GODRICH, Christopher KANAN, Thomas FUCHS, Leo GRADY
  • Publication number: 20230245477
    Abstract: Systems and methods are disclosed for receiving one or more electronic slide images associated with a tissue specimen, the tissue specimen being associated with a patient and/or medical case, partitioning a first slide image of the one or more electronic slide images into a plurality of tiles, detecting a plurality of tissue regions of the first slide image and/or plurality of tiles to generate a tissue mask, determining whether any of the plurality of tiles corresponds to non-tissue, removing any of the plurality of tiles that are determined to be non-tissue, determining a prediction, using a machine learning prediction model, for at least one label for the one or more electronic slide images, the machine learning prediction model having been generated by processing a plurality of training images, and outputting the prediction of the trained machine learning prediction model.
    Type: Application
    Filed: March 20, 2023
    Publication date: August 3, 2023
    Inventors: Brandon ROTHROCK, Christopher KANAN, Julian VIRET, Thomas FUCHS, Leo GRADY
  • Publication number: 20230222662
    Abstract: Systems and methods are disclosed for receiving a digital image corresponding to a target specimen associated with a pathology category, determining a quality control (QC) machine learning model to predict a quality designation based on one or more artifacts, providing the digital image as an input to the QC machine learning model, receiving the quality designation for the digital image as an output from the machine learning model, and outputting the quality designation of the digital image. A quality assurance (QA) machine learning model may predict a disease designation based on one or more biomarkers. The digital image may be provided to the QA model which may output a disease designation. An external designation may be compared to the disease designation and a comparison result may be output.
    Type: Application
    Filed: February 24, 2023
    Publication date: July 13, 2023
    Inventors: Jillian SUE, Razik YOUSFI, Peter SCHUEFFLER, Thomas FUCHS, Leo GRADY
  • Patent number: 11682117
    Abstract: Described herein are systems and methods of training models to segment images. A device may identify a training dataset. The training dataset may include images each having a region of interest. The training dataset may include first annotations. The device may train, using the training dataset, an image segmentation model having parameters to generate a corresponding first segmented images. The device may provide the first segmented images for presentation on a user interface to obtain feedback. The device may receive, via the user interface, a feedback dataset including second annotations for at least a subset of the first segmented images. Each of the second annotations may label at least a second portion of the region of interest in a corresponding image of the subset. The device may retrain, using the feedback dataset received via the user interface, the image segmentation model.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: June 20, 2023
    Assignee: Memorial Sloan Kettering Cancer Center
    Inventors: Thomas Fuchs, David Joon Ho
  • Patent number: 11682186
    Abstract: The present disclosure is directed to systems and methods for identifying regions of interest (ROIs) in images. A computing system may identify an image including an annotation defining an ROI. The image may have a plurality of pixels in a first color space. The computing system may convert the plurality of pixels from the first color space to a second color space to differentiate the annotation from the ROI. The computing system may select a first subset of pixels corresponding to the annotation based at least on a color value of the first subset of pixels in the second color space. The computing system may identify a second subset of pixels included in the ROI from the image using the first subset of pixels. The computing system may store an association between the second subset of pixels and the ROI defined by the annotation in the image.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: June 20, 2023
    Assignee: Memorial Sloan Kettering Cancer Center
    Inventors: Thomas Fuchs, Peter J. Schüffler, Dig Vijay Kumar Yarlagadda, Chad Vanderbilt
  • Patent number: 11676704
    Abstract: Systems and methods are disclosed for determining at least one geographic region of a plurality of geographic regions, at least one data variable, and/or at least one health variable, estimating a current prevalence of a data variable in a geographic region of the plurality of geographic regions, determining a trend in a relationship between the data variable and the geographic region at a current time, determining a second trend in the relationship between the data variable and the geographic region at at least one prior point in time, determining if the trend in the relationship is irregular within a predetermined threshold with respect to the second trend from the at least one prior point in time, and, upon determining that the trend in the relationship is irregular within a predetermined threshold, generating an alert.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: June 13, 2023
    Assignee: Paige.AI, Inc.
    Inventors: Christopher Kanan, Rodrigo Ceballos Lentini, Jillian Sue, Thomas Fuchs, Leo Grady
  • Patent number: 11676274
    Abstract: Systems and methods are disclosed for processing an electronic image corresponding to a specimen. One method for processing the electronic image includes: receiving a target electronic image of a slide corresponding to a target specimen, the target specimen including a tissue sample from a patient, applying a machine learning system to the target electronic image to determine deficiencies associated with the target specimen, the machine learning system having been generated by processing a plurality of training images to predict stain deficiencies and/or predict a needed recut, the training images including images of human tissue and/or images that are algorithmically generated; and based on the deficiencies associated with the target specimen, determining to automatically order an additional slide to be prepared.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: June 13, 2023
    Assignee: Paige.AI, Inc.
    Inventors: Rodrigo Ceballos Lentini, Christopher Kanan, Patricia Raciti, Leo Grady, Thomas Fuchs
  • Publication number: 20230147471
    Abstract: Systems and methods are disclosed for identifying a diagnostic feature of a digitized pathology image, including receiving one or more digitized images of a pathology specimen, and medical metadata comprising at least one of image metadata, specimen metadata, clinical information, and/or patient information, applying a machine learning model to predict a plurality of relevant diagnostic features based on medical metadata, the machine learning model having been developed using an archive of processed images and prospective patient data, and determining at least one relevant diagnostic feature of the relevant diagnostic features for output to a display.
    Type: Application
    Filed: January 5, 2023
    Publication date: May 11, 2023
    Inventors: Jillian SUE, Thomas FUCHS, Christopher KANAN
  • Publication number: 20230144137
    Abstract: Systems and methods are disclosed for receiving a target image corresponding to a target specimen, the target specimen comprising a tissue sample of a patient, applying a machine learning model to the target image to determine at least one characteristic of the target specimen and/or at least one characteristic of the target image, the machine learning model having been generated by processing a plurality of training images to predict at least one characteristic, the training images comprising images of human tissue and/or images that are algorithmically generated, and outputting the at least one characteristic of the target specimen and/or the at least one characteristic of the target image.
    Type: Application
    Filed: January 4, 2023
    Publication date: May 11, 2023
    Inventors: Supriya KAPUR, Christopher KANAN, Thomas FUCHS, Leo GRADY
  • Publication number: 20230143593
    Abstract: The present disclosure is directed to systems and methods of maintaining databases of biomedical images. A server may aggregate digital pathology records from data sources onto a database. Each record may be generated by a data source using a format, and may identify a biomedical image of a sample and data identifying a subject from which the sample is obtained. The server may receive, from a client device, a query identifying a criterion. The server may access the database to identify a subset of records using the criterion. For each record of the subset, the server may identify a data source that generated the record. The server may select a de-identification policy to apply based on the data source. The server may modify the data in the record according to the de-identification policy and the format. The server may provide, to the client device, the de-identified record.
    Type: Application
    Filed: March 15, 2021
    Publication date: May 11, 2023
    Inventors: Thomas Fuchs, Luke Geneslaw, Dig Vijay Kumar Yarlagadda
  • Patent number: 11640719
    Abstract: Systems and methods are disclosed for receiving one or more electronic slide images associated with a tissue specimen, the tissue specimen being associated with a patient and/or medical case, partitioning a first slide image of the one or more electronic slide images into a plurality of tiles, detecting a plurality of tissue regions of the first slide image and/or plurality of tiles to generate a tissue mask, determining whether any of the plurality of tiles corresponds to non-tissue, removing any of the plurality of tiles that are determined to be non-tissue, determining a prediction, using a machine learning prediction model, for at least one label for the one or more electronic slide images, the machine learning prediction model having been generated by processing a plurality of training images, and outputting the prediction of the trained machine learning prediction model.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: May 2, 2023
    Assignee: Paige.AI, Inc.
    Inventors: Brandon Rothrock, Christopher Kanan, Julian Viret, Thomas Fuchs, Leo Grady
  • Patent number: 11636696
    Abstract: The present application relates generally to identifying regions of interest in images, including but not limited to whole slide image region of interest identification, prioritization, de-duplication, and normalization via interpretable rules, nuclear region counting, point set registration, and histogram specification color normalization. This disclosure describes systems and methods for analyzing and extracting regions of interest from images, for example biomedical images depicting a tissue sample from biopsy or ectomy. Techniques directed to quality control estimation, granular classification, and coarse classification of regions of biomedical images are described herein. Using the described techniques, patches of images corresponding to regions of interest can be extracted and analyzed individually or in parallel to determine pixels correspond to features of interest and pixels that do not.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: April 25, 2023
    Assignee: Memorial Sloan Kettering Cancer Center
    Inventors: Andrew Schaumberg, Thomas Fuchs
  • Publication number: 20230111077
    Abstract: Systems and methods are disclosed for processing digital images to predict at least one continuous value comprising receiving one or more digital medical images, determining whether the one or more digital medical images includes at least one salient region, upon determining that the one or more digital medical images includes the at least one salient region, predicting, by a trained machine learning system, at least one continuous value corresponding to the at least one salient region, and outputting the at least one continuous value to an electronic storage device and/or display.
    Type: Application
    Filed: October 14, 2022
    Publication date: April 13, 2023
    Inventors: Christopher KANAN, Belma DOGDAS, Patricia RACITI, Matthew LEE, Alican BOZKURT, Leo GRADY, Thomas FUCHS, Jorge S. REIS-FILHO