Patents by Inventor Thomas Grotz

Thomas Grotz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170266012
    Abstract: This disclosure is directed to a resilient interpositional arthroplasty implant for application into a knee joint to pad cartilage defects, cushion a joint, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. Rather than using periosteal harvesting for cell containment in joint resurfacing, the walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability to avoid extrusion or dislocation.
    Type: Application
    Filed: May 30, 2017
    Publication date: September 21, 2017
    Inventor: R. Thomas GROTZ
  • Patent number: 9757241
    Abstract: This disclosure is directed to a resilient interpositional arthroplasty implant for application into a joint to pad cartilage defects, cushion, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. The walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability so as to enable immediate limb use after outpatient surgery. Appendages of the implant may repair or reconstruct tendons or ligaments, and menisci by interpositional inflatable or compliant polymer arthroplasties that promote anatomic joint motion.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: September 12, 2017
    Inventor: R. Thomas Grotz
  • Publication number: 20170224506
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. The implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system having a plurality of linked locking elements that work in unison to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.
    Type: Application
    Filed: December 13, 2016
    Publication date: August 10, 2017
    Inventors: John E. Ashley, Philip J. Simpson, Walter Dean Gillespie, Damien J. Shulock, Murali Kadaba, David G. Matsuura, George A. Mansfield, III, Thomas Grotz, Rudy Pretti, Dennis Crandall
  • Publication number: 20170216049
    Abstract: An expandable medical implant is provided with an implantable cage body. The proximal and distal ends of the cage body may each be provided with a tapered or cam portion. The implant may further include a proximal flexure, a distal flexure, a proximal plug member having a tapered portion configured to mate with the tapered portion of the proximal end of the cage body, and a distal plug member having a tapered portion configured to mate with the tapered portion of the distal end of the cage body. The proximal plug member may be configured to move longitudinally such that the distal flexure moves and the circumference of the proximal end of the cage body resiliently expands. The distal plug member may be configured to move longitudinally such that the proximal flexure moves and the circumference of the distal end of the cage body resiliently expands. Methods are also disclosed.
    Type: Application
    Filed: April 11, 2017
    Publication date: August 3, 2017
    Inventor: Robert Thomas GROTZ
  • Patent number: 9662218
    Abstract: This disclosure is directed to a resilient interpositional arthroplasty implant for application into a knee joint to pad cartilage defects, cushion a joint, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. Rather than using periosteal harvesting for cell containment in joint resurfacing, the walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability to avoid extrusion or dislocation.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: May 30, 2017
    Inventor: R. Thomas Grotz
  • Patent number: 9622878
    Abstract: An expandable medical implant is provided with an implantable cage body. The proximal and distal ends of the cage body may each be provided with a tapered or cam portion. The implant may further include a proximal flexure, a distal flexure, a proximal plug member having a tapered portion configured to mate with the tapered portion of the proximal end of the cage body, and a distal plug member having a tapered portion configured to mate with the tapered portion of the distal end of the cage body. The proximal plug member may be configured to move longitudinally such that the distal flexure moves and the circumference of the proximal end of the cage body resiliently expands. The distal plug member may be configured to move longitudinally such that the proximal flexure moves and the circumference of the distal end of the cage body resiliently expands. Methods are also disclosed.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: April 18, 2017
    Inventor: Robert Thomas Grotz
  • Patent number: 9545316
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. The implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system having a plurality of linked locking elements that work in unison to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: January 17, 2017
    Assignee: Howmedica Osteonics Corp.
    Inventors: John E. Ashley, Philip J. Simpson, Walter Dean Gillespie, Damien Shulock, Murali Kadaba, David G. Matsuura, George A. Mansfield, III, Thomas Grotz, Rudy Pretti, Dennis Crandall
  • Publication number: 20160135960
    Abstract: An expandable medical implant is provided with an implantable cage body. The proximal and distal ends of the cage body may each be provided with a tapered or cam portion. The implant may further include a proximal flexure, a distal flexure, a proximal plug member having a tapered portion configured to mate with the tapered portion of the proximal end of the cage body, and a distal plug member having a tapered portion configured to mate with the tapered portion of the distal end of the cage body. The proximal plug member may be configured to move longitudinally such that the distal flexure moves and the circumference of the proximal end of the cage body resiliently expands. The distal plug member may be configured to move longitudinally such that the proximal flexure moves and the circumference of the distal end of the cage body resiliently expands. Methods are also disclosed.
    Type: Application
    Filed: November 12, 2015
    Publication date: May 19, 2016
    Inventor: Robert Thomas GROTZ
  • Publication number: 20160095706
    Abstract: This disclosure is directed to a resilient interpositional arthroplasty implant for application into joints to pad cartilage defects, cushion joints, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. Rather than using periosteal harvesting for cell containment in joint resurfacing, the walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability to avoid extrusion or dislocation.
    Type: Application
    Filed: September 4, 2015
    Publication date: April 7, 2016
    Inventor: R. Thomas Grotz
  • Publication number: 20160058548
    Abstract: This disclosure is directed to a resilient interpositional arthroplasty implant for application into joints to pad cartilage defects, cushion joints, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. Rather than using periosteal harvesting for cell containment in joint resurfacing, the walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability to avoid extrusion or dislocation.
    Type: Application
    Filed: November 9, 2015
    Publication date: March 3, 2016
    Inventor: R. Thomas Grotz
  • Publication number: 20150289988
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. The implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system having a plurality of linked locking elements that work in unison to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.
    Type: Application
    Filed: March 11, 2015
    Publication date: October 15, 2015
    Inventors: John E. Ashley, Philip J. Simpson, Walter Dean Gillespie, Damien Shulock, Murali Kadaba, David G. Matsuura, George A. Mansfield, III, Thomas Grotz, Rudy Pretti, Dennis Crandall
  • Publication number: 20150216676
    Abstract: A selectively expanding spine cage has a minimized cross section in its unexpanded state that is smaller than the diameter of the neuroforamen through which it passes in the distracted spine. The cage conformably engages between the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Expanding selectively (anteriorly, along the vertical axis of the spine) rather than uniformly, the cage height increases and holds the vertebrae with fixation forces greater than adjacent bone and soft tissue failure forces in natural lordosis. Stability is thus achieved immediately, enabling patient function by eliminating painful motion. The cage shape intends to rest proximate to the anterior column cortices securing the desired spread and fixation, allowing for bone graft in, around, and through the implant for arthrodesis whereas for arthroplasty it fixes to endpoints but cushions the spine naturally.
    Type: Application
    Filed: April 17, 2015
    Publication date: August 6, 2015
    Inventors: Damien J. Shulock, John E. Ashley, Thomas Grotz, Rudy Pretti
  • Publication number: 20150134064
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one fixation element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to engage a surface of an adjacent vertebral body and secure the implant between two vertebral bodies. Preferably, the implant is expandable and has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it must pass to be deployed within the intervertebral space. Once within the space between vertebral bodies, the implant can be expanded so as to engage the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can be corrected, and natural curvatures restored and maintained.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 14, 2015
    Inventors: R. Thomas Grotz, Rudy A. Pretti
  • Patent number: 9028550
    Abstract: A selectively expanding spine cage has a minimized cross section in its unexpanded state that is smaller than the diameter of the neuroforamen through which it passes in the distracted spine. The cage conformably engages between the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Expanding selectively (anteriorly, along the vertical axis of the spine) rather than uniformly, the cage height increases and holds the vertebrae with fixation forces greater than adjacent bone and soft tissue failure forces in natural lordosis. Stability is thus achieved immediately, enabling patient function by eliminating painful motion. The cage shape intends to rest proximate to the anterior column cortices securing the desired spread and fixation, allowing for bone graft in, around, and through the implant for arthrodesis whereas for arthroplasty it fixes to endpoints but cushions the spine naturally.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 12, 2015
    Assignee: CoAlign Innovations, Inc.
    Inventors: Damien J. Shulock, John E. Ashley, Thomas Grotz, Rudy Pretti
  • Patent number: 8992620
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. The implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system having a plurality of linked locking elements that work in unison to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 31, 2015
    Assignee: CoAlign Innovations, Inc.
    Inventors: John E. Ashley, Philip J. Simpson, Walter Dean Gillespie, Damien J. Shulock, Murali Kadaba, David G. Matsuura, George A. Mansfield, III, Thomas Grotz, Rudy Pretti, Dennis Crandall
  • Patent number: 8956413
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can also be corrected, and natural curvatures restored. Preferably, the implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system preferably having a plurality of locking elements to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: February 17, 2015
    Assignee: CoAlign Innovations, Inc.
    Inventors: John E. Ashley, Murali Kadaba, Philip J. Simpson, Walter Dean Gillespie, Thomas Grotz, George A. Mansfield, III, David G. Matsuura, Rudy Pretti
  • Patent number: 8932355
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one fixation element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to engage a surface of an adjacent vertebral body and secure the implant between two vertebral bodies. Preferably, the implant is expandable and has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it must pass to be deployed within the intervertebral space. Once within the space between vertebral bodies, the implant can be expanded so as to engage the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can be corrected, and natural curvatures restored and maintained.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: January 13, 2015
    Assignee: CoAlign Innovations, Inc.
    Inventors: R. Thomas Grotz, Rudy A. Pretti
  • Publication number: 20140316526
    Abstract: This disclosure is directed to a resilient interpositional arthroplasty implant for application into a joint to pad cartilage defects, cushion, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. The walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability so as to enable immediate limb use after outpatient surgery. Appendages of the implant may repair or reconstruct tendons or ligaments, and menisci by interpositional inflatable or compliant polymer arthroplasties that promote anatomic joint motion.
    Type: Application
    Filed: August 30, 2012
    Publication date: October 23, 2014
    Inventor: R. Thomas Grotz
  • Publication number: 20140257500
    Abstract: This disclosure is directed to a resilient interpositional arthroplasty implant for application into a knee joint to pad cartilage defects, cushion a joint, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. Rather than using periosteal harvesting for cell containment in joint resurfacing, the walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability to avoid extrusion or dislocation.
    Type: Application
    Filed: May 28, 2014
    Publication date: September 11, 2014
    Inventor: R. Thomas GROTZ
  • Patent number: 8771363
    Abstract: This disclosure is directed to a resilient interpositional arthroplasty implant for application into a knee joint to pad cartilage defects, cushion a joint, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. Rather than using periosteal harvesting for cell containment in joint resurfacing, the walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability to avoid extrusion or dislocation.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: July 8, 2014
    Inventor: R. Thomas Grotz