Patents by Inventor Thomas Grotz

Thomas Grotz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190000641
    Abstract: An expandable medical implant is provided with an implantable cage body. Methods for stabilizing and correcting the alignment of a spine with an expandable medical implant are provided. The proximal and distal ends of the cage body may each be provided with a plug for causing expansion of the ends of the implant and therefore the bone engaging surfaces of the implant. The proximal plug member may be configured to move longitudinally such that the proximal end of the cage body resiliently expands. The distal plug member may be configured to move longitudinally such that the distal end of the cage body resiliently expands. The proximal and distal plug members are moved longitudinally independently from one another to allow for independent expansion and contraction of each of the proximal and distal ends of the cage body itself.
    Type: Application
    Filed: September 5, 2018
    Publication date: January 3, 2019
    Applicant: iOrthopedics, Inc.
    Inventor: Robert Thomas Grotz
  • Publication number: 20180333270
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one fixation element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to engage a surface of an adjacent vertebral body and secure the implant between two vertebral bodies. Preferably, the implant is expandable and has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it must pass to be deployed within the intervertebral space. Once within the space between vertebral bodies, the implant can be expanded so as to engage the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can be corrected, and natural curvatures restored and maintained.
    Type: Application
    Filed: March 28, 2018
    Publication date: November 22, 2018
    Inventors: R. Thomas Grotz, Rudy A. Pretti
  • Patent number: 10092405
    Abstract: The disclosure is directed to a resilient implant for implantation into human or animal joints to act as a cushion allowing for renewed joint motion. The implant endures variable joint forces and cyclic loads while reducing pain and improving function after injury or disease to repair, reconstruct, and regenerate joint integrity. The implant is deployed in a prepared debrided joint space, secured to at least one of the joint bones and expanded in the space, molding to surrounding structures with sufficient stability to avoid extrusion or dislocation. The implant has opposing walls that move in varied directions, and an inner space filled with suitable filler to accommodate motions which mimic or approximate normal joint motion. The implant pads the damaged joint surfaces, restores cushioning immediately and may be employed to restore cartilage to normal by delivering regenerative cells.
    Type: Grant
    Filed: October 1, 2017
    Date of Patent: October 9, 2018
    Assignee: IORTHOPEDICS, INC.
    Inventor: Robert Thomas Grotz
  • Patent number: 10085846
    Abstract: An expandable medical implant is provided with an implantable cage body. Methods for stabilizing and correcting the alignment of a spine with an expandable medical implant are provided. The proximal and distal ends of the cage body may each be provided with a plug for causing expansion of the ends of the implant and therefore the bone engaging surfaces of the implant. The proximal plug member may be configured to move longitudinally such that the proximal end of the cage body resiliently expands. The distal plug member may be configured to move longitudinally such that the distal end of the cage body resiliently expands. The proximal and distal plug members are moved longitudinally independently from one another to allow for independent expansion and contraction of each of the proximal and distal ends of the cage body itself.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: October 2, 2018
    Assignee: IORTHOPEDICS, INC.
    Inventor: Robert Thomas Grotz
  • Patent number: 10045851
    Abstract: This disclosure is directed to restoring joints by deploying a resilient interpositional arthroplasty implant. Such implants function to pad cartilage defects, cushion, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. The walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability so as to enable immediate limb use after outpatient surgery. Appendages of the implant may repair or reconstruct tendons or ligaments, and menisci by interpositional inflatable or compliant polymer arthroplasties that promote anatomic joint motion.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: August 14, 2018
    Assignee: IORTHOPEDICS, INC.
    Inventor: Robert Thomas Grotz
  • Publication number: 20180221165
    Abstract: An expandable medical implant is provided with an implantable cage body. Methods for stabilizing and correcting the alignment of a spine with an expandable medical implant are provided. The proximal and distal ends of the cage body may each be provided with a plug for causing expansion of the ends of the implant and therefore the bone engaging surfaces of the implant. The proximal plug member may be configured to move longitudinally such that the proximal end of the cage body resiliently expands. The distal plug member may be configured to move longitudinally such that the distal end of the cage body resiliently expands. The proximal and distal plug members are moved longitudinally independently from one another to allow for independent expansion and contraction of each of the proximal and distal ends of the cage body itself.
    Type: Application
    Filed: April 9, 2018
    Publication date: August 9, 2018
    Applicant: iOrthopedics, Inc.
    Inventor: Robert Thomas Grotz
  • Patent number: 10004605
    Abstract: This disclosure is directed to a resilient interpositional arthroplasty implant for application into a knee joint to pad cartilage defects, cushion a joint, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. Rather than using periosteal harvesting for cell containment in joint resurfacing, the walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability to avoid extrusion or dislocation.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: June 26, 2018
    Assignee: IORTHOPEDICS, INC.
    Inventor: R. Thomas Grotz
  • Patent number: 9999515
    Abstract: An expandable medical implant is provided with an implantable cage body. Methods for stabilizing and correcting the alignment of a spine with an expandable medical implant are provided. The proximal and distal ends of the cage body may each be provided with a tapered or cam portion. The implant may further include a proximal flexure, a distal flexure, a proximal plug member having a tapered portion configured to mate with the tapered portion of the proximal end of the cage body, and a distal plug member having a tapered portion configured to mate with the tapered portion of the distal end of the cage body. The proximal plug member may be configured to move longitudinally such that the distal flexure moves and the circumference of the proximal end of the cage body resiliently expands. The distal plug member may be configured to move longitudinally such that the proximal flexure moves and the circumference of the distal end of the cage body resiliently expands.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: June 19, 2018
    Assignee: IORTHOPEDICS, INC.
    Inventor: Robert Thomas Grotz
  • Publication number: 20180153707
    Abstract: An expandable medical implant is provided with an implantable cage body. Methods for stabilizing and correcting the alignment of a spine with an expandable medical implant are provided. The proximal and distal ends of the cage body may each be provided with a tapered or cam portion. The implant may further include a proximal flexure, a distal flexure, a proximal plug member having a tapered portion configured to mate with the tapered portion of the proximal end of the cage body, and a distal plug member having a tapered portion configured to mate with the tapered portion of the distal end of the cage body. The proximal plug member may be configured to move longitudinally such that the distal flexure moves and the circumference of the proximal end of the cage body resiliently expands. The distal plug member may be configured to move longitudinally such that the proximal flexure moves and the circumference of the distal end of the cage body resiliently expands.
    Type: Application
    Filed: December 4, 2017
    Publication date: June 7, 2018
    Applicant: iOrthopedics, Inc.
    Inventor: Robert Thomas Grotz
  • Patent number: 9931222
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one fixation element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to engage a surface of an adjacent vertebral body and secure the implant between two vertebral bodies. Preferably, the implant is expandable and has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it must pass to be deployed within the intervertebral space. Once within the space between vertebral bodies, the implant can be expanded so as to engage the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can be corrected, and natural curvatures restored and maintained.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: April 3, 2018
    Assignee: Howmedica Osteonics Corp.
    Inventors: R. Thomas Grotz, Rudy A. Pretti
  • Publication number: 20180064557
    Abstract: A selectively expanding spine cage has a minimized cross section in its unexpanded state that is smaller than the diameter of the neuroforamen through which it passes in the distracted spine. The cage conformably engages between the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Expanding selectively (anteriorly, along the vertical axis of the spine) rather than uniformly, the cage height increases and holds the vertebrae with fixation forces greater than adjacent bone and soft tissue failure forces in natural lordosis. Stability is thus achieved immediately, enabling patient function by eliminating painful motion. The cage shape intends to rest proximate to the anterior column cortices securing the desired spread and fixation, allowing for bone graft in, around, and through the implant for arthrodesis whereas for arthroplasty it fixes to endpoints but cushions the spine naturally.
    Type: Application
    Filed: November 9, 2017
    Publication date: March 8, 2018
    Inventors: Damien J. Shulock, John E. Ashley, Thomas Grotz, Rudy Pretti
  • Publication number: 20180064544
    Abstract: This disclosure is directed to a resilient interpositional arthroplasty implant for application into a joint to pad cartilage defects, cushion, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. The walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability so as to enable immediate limb use after outpatient surgery. Appendages of the implant may repair or reconstruct tendons or ligaments, and menisci by interpositional compliant polymer arthroplasties that promote anatomic joint motion.
    Type: Application
    Filed: November 9, 2017
    Publication date: March 8, 2018
    Applicant: iOrthopedics, Inc.
    Inventor: Robert Thomas Grotz
  • Publication number: 20180028319
    Abstract: The disclosure is directed to a resilient implant for implantation into human or animal joints to act as a cushion allowing for renewed joint motion. The implant endures variable joint forces and cyclic loads while reducing pain and improving function after injury or disease to repair, reconstruct, and regenerate joint integrity. The implant is deployed in a prepared debrided joint space, secured to at least one of the joint bones and expanded in the space, molding to surrounding structures with sufficient stability to avoid extrusion or dislocation. The implant has opposing walls that move in varied directions, and an inner space filled with suitable filler to accommodate motions which mimic or approximate normal joint motion. The implant pads the damaged joint surfaces, restores cushioning immediately and may be employed to restore cartilage to normal by delivering regenerative cells.
    Type: Application
    Filed: October 1, 2017
    Publication date: February 1, 2018
    Applicant: iOrthopedics, Inc.
    Inventor: Robert Thomas Grotz
  • Patent number: 9872778
    Abstract: An expandable medical implant is provided with an implantable cage body. The proximal and distal ends of the cage body may each be provided with a tapered or cam portion. The implant may further include a proximal flexure, a distal flexure, a proximal plug member having a tapered portion configured to mate with the tapered portion of the proximal end of the cage body, and a distal plug member having a tapered portion configured to mate with the tapered portion of the distal end of the cage body. The proximal plug member may be configured to move longitudinally such that the distal flexure moves and the circumference of the proximal end of the cage body resiliently expands. The distal plug member may be configured to move longitudinally such that the proximal flexure moves and the circumference of the distal end of the cage body resiliently expands. Methods are also disclosed.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: January 23, 2018
    Assignee: IORTHOPEDICS, INC.
    Inventor: Robert Thomas Grotz
  • Patent number: 9861494
    Abstract: An expandable medical implant is provided with an implantable cage body. Methods for stabilizing and correcting the alignment of a spine with an expandable medical implant are provided. The proximal and distal ends of the cage body may each be provided with a tapered or cam portion. The implant may further include a proximal flexure, a distal flexure, a proximal plug member having a tapered portion configured to mate with the tapered portion of the proximal end of the cage body, and a distal plug member having a tapered portion configured to mate with the tapered portion of the distal end of the cage body. The proximal plug member may be configured to move longitudinally such that the distal flexure moves and the circumference of the proximal end of the cage body resiliently expands. The distal plug member may be configured to move longitudinally such that the proximal flexure moves and the circumference of the distal end of the cage body resiliently expands.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: January 9, 2018
    Assignee: IORTHOPEDICS, INC.
    Inventor: Robert Thomas Grotz
  • Publication number: 20170333202
    Abstract: An expandable medical implant is provided with an implantable cage body. Methods for stabilizing and correcting the alignment of a spine with an expandable medical implant are provided. The proximal and distal ends of the cage body may each be provided with a tapered or cam portion. The implant may further include a proximal flexure, a distal flexure, a proximal plug member having a tapered portion configured to mate with the tapered portion of the proximal end of the cage body, and a distal plug member having a tapered portion configured to mate with the tapered portion of the distal end of the cage body. The proximal plug member may be configured to move longitudinally such that the distal flexure moves and the circumference of the proximal end of the cage body resiliently expands. The distal plug member may be configured to move longitudinally such that the proximal flexure moves and the circumference of the distal end of the cage body resiliently expands.
    Type: Application
    Filed: August 3, 2017
    Publication date: November 23, 2017
    Applicant: iOrthopedics, Inc.
    Inventor: Robert Thomas Grotz
  • Patent number: 9814600
    Abstract: A selectively expanding spine cage has a minimized cross section in its unexpanded state that is smaller than the diameter of the neuroforamen through which it passes in the distracted spine. The cage conformably engages between the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Expanding selectively (anteriorly, along the vertical axis of the spine) rather than uniformly, the cage height increases and holds the vertebrae with fixation forces greater than adjacent bone and soft tissue failure forces in natural lordosis. Stability is thus achieved immediately, enabling patient function by eliminating painful motion. The cage shape intends to rest proximate to the anterior column cortices securing the desired spread and fixation, allowing for bone graft in, around, and through the implant for arthrodesis whereas for arthroplasty it fixes to endpoints but cushions the spine naturally.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: November 14, 2017
    Assignee: Howmedica Osteonics Corp.
    Inventors: Damien J. Shulock, John E. Ashley, Thomas Grotz, Rudy Pretti
  • Patent number: 9808345
    Abstract: The disclosure is directed to a resilient implant for implantation into human or animal joints to act as a cushion allowing for renewed joint motion. The implant endures variable joint forces and cyclic loads while reducing pain and improving function after injury or disease to repair, reconstruct, and regenerate joint integrity. The implant is deployed in a prepared debrided joint space, secured to at least one of the joint bones and expanded in the space, molding to surrounding structures with sufficient stability to avoid extrusion or dislocation. The implant has opposing walls that move in varied directions, and an inner space filled with suitable filler to accommodate motions which mimic or approximate normal joint motion. The implant pads the damaged joint surfaces, restores cushioning immediately and may be employed to restore cartilage to normal by delivering regenerative cells.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: November 7, 2017
    Assignee: IORTHOPEDICS, INC.
    Inventor: R. Thomas Grotz
  • Publication number: 20170312088
    Abstract: This disclosure is directed to restoring joints by deploying a resilient interpositional arthroplasty implant. Such implants function to pad cartilage defects, cushion, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. The walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability so as to enable immediate limb use after outpatient surgery. Appendages of the implant may repair or reconstruct tendons or ligaments, and menisci by interpositional inflatable or compliant polymer arthroplasties that promote anatomic joint motion.
    Type: Application
    Filed: July 17, 2017
    Publication date: November 2, 2017
    Applicant: iOrthopedics, Inc.
    Inventor: Robert Thomas Grotz
  • Patent number: D833613
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: November 13, 2018
    Assignee: IORTHOPEDICS, INC.
    Inventor: Robert Thomas Grotz