Patents by Inventor Thomas H. Baum

Thomas H. Baum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090215225
    Abstract: Precursors for use in depositing tellurium-containing films on substrates such as wafers or other microelectronic device substrates, as well as associated processes of making and using such precursors, and source packages of such precursors. The precursors are useful for deposition of chalcogenide thin films in the manufacture of nonvolatile Phase Change Memory (PCM), by deposition techniques such as chemical vapor deposition (CVD) and atomic layer deposition (ALD).
    Type: Application
    Filed: February 24, 2009
    Publication date: August 27, 2009
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Matthias Stender, Chongying Xu, Tianniu Chen, William Hunks, Philip S.H. Chen, Jeffrey F. Roeder, Thomas H. Baum
  • Publication number: 20090212021
    Abstract: An aqueous metal etching composition useful for removal of metals such as nickel, cobalt, titanium, tungsten, and alloys thereof, after formation of metal silicides via rapid thermal annealing during complementary metal-oxide-semiconductor (CMOS) transistor fabrication. The aqueous metal etching composition is also useful for selective removal of metal silicides and/or metal nitrides for wafer re-work. In one formulation, the aqueous metal etching composition contains oxalic acid, and a chloride-containing compound, and in other formulations, the composition contains an oxidizer, such as hydrogen peroxide, and a fluoride source, e.g., borofluoric acid. The composition in another specific formulation contains borofluoric acid and boric acid for effective etching of nickel, cobalt, titanium, tungsten, metal alloys, metal silicides and metal nitrides, without attacking the dielectric and the substrate.
    Type: Application
    Filed: June 13, 2006
    Publication date: August 27, 2009
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: David D. Bernhard, Weihua Wang, Thomas H. Baum
  • Patent number: 7579496
    Abstract: This invention relates to silicon precursor compositions for forming silicon-containing films by low temperature (e.g., <550° C.) chemical vapor deposition processes for fabrication of ULSI devices and device structures. Such silicon precursor compositions comprise at least a silane or disilane derivative that is substituted with at least one alkylhydrazine functional groups and is free of halogen substitutes.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: August 25, 2009
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ziyun Wang, Chongying Xu, Thomas H. Baum
  • Publication number: 20090208637
    Abstract: Cobalt precursors for forming metallic cobalt thin films in the manufacture of semiconductor devices, and methods of depositing the cobalt precursors on substrates, e.g., using chemical vapor deposition or atomic layer deposition processes. Packaged cobalt precursor compositions, and microelectronic device manufacturing systems are also described.
    Type: Application
    Filed: June 13, 2007
    Publication date: August 20, 2009
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Tianniu Chen, Chongying Xu, Jeffrey F. Roeder, Thomas H. Baum, Bryan C. Hendrix
  • Publication number: 20090192065
    Abstract: A method and composition for removing hardened photoresist, post-etch photoresist, and/or bottom anti-reflective coating from a microelectronic device is described. The composition may include a dense fluid, e.g., a supercritical fluid, and a dense fluid concentrate including a co-solvent, optionally a fluoride source, and optionally an acid. The dense fluid compositions substantially remove the contaminating residue and/or layers from the microelectronic device prior to subsequent processing, thus improving the morphology, performance, reliability and yield of the microelectronic device.
    Type: Application
    Filed: June 16, 2006
    Publication date: July 30, 2009
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Michael B. Korzenski, Pamela M. Visintin, Thomas H. Baum, David W. Minsek, Chongying Xu
  • Patent number: 7557073
    Abstract: A method and composition for removing ion-implanted photoresist from semiconductor substrates having such photoresist is described. The removal composition contains supercritical CO2 (SCCO2), a co-solvent and a reducing agent for use in removing ion-implanted photoresist. Such removal composition overcomes the intrinsic deficiency of SCCO2 as a removal reagent, viz., the non-polar character of SCCO2 and its associated inability to solubilize species such as inorganic salts and polar organic compounds that are present in the photoresist and that must be removed from the semiconductor substrate for efficient cleaning.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: July 7, 2009
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Michael B. Korzenski, Thomas H. Baum
  • Patent number: 7553803
    Abstract: A method and composition for removing silicon-containing particulate material, such as silicon nitrides and silicon oxides, from patterned Si/SiO2 semiconductor wafer surfaces is described. The composition includes a supercritical fluid (SCF), an etchant species, a co-solvent, a surface passivator, a binder, deionized water, and optionally a surfactant. The SCF-based compositions substantially remove the contaminating particulate material from the wafer surface prior to subsequent processing, thus improving the morphology, performance, reliability and yield of the semiconductor device.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: June 30, 2009
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Michael B. Korzenski, Thomas H. Baum
  • Publication number: 20090162550
    Abstract: Copper (I) amidinate and copper (I) guanidinate precursors for forming copper thin films in the manufacture of microelectronic device articles, e.g., using chemical vapor deposition, atomic layer deposition, and rapid vapor deposition processes, as well as mixed ligand copper complexes suitable for such processes. Also described are solvent/additive compositions for copper precursors for CVD/ALD of copper metal films, which are highly advantageous for liquid delivery of such copper amidinates and copper guanidinates, as well as for other organocopper precursor compounds and complexes, e.g., copper isoureate complexes.
    Type: Application
    Filed: December 29, 2006
    Publication date: June 25, 2009
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Tianniu Chen, Chongying Xu, Thomas H. Baum, Bryan C. Hendrix, Thomas M. Cameron, Jeffrey F. Roeder, Matthias Stender
  • Publication number: 20090137122
    Abstract: A method of passivating a CMP composition by dilution and determining the relationship between the extent of dilution and the static etch rate of copper. Such relationship may be used to control the CMP composition during the CMP polish to minimize the occurrence of dishing or other adverse planarization deficiencies in the polished copper, even in the presence of substantial levels of copper ions in the CMP composition and at the copper/CMP composition interface.
    Type: Application
    Filed: September 19, 2008
    Publication date: May 28, 2009
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Jun Liu, Mackenzie King, Michael S. Darsillo, Karl E. Boggs, Jeffrey F. Roeder, Peter Wrschka, Thomas H. Baum
  • Publication number: 20090124039
    Abstract: A system and method for forming a phase change memory material on a substrate, in which the substrate is contacted with precursors for a phase change memory chalcogenide alloy under conditions producing deposition of the chalcogenide alloy on the substrate, at temperature below 350° C. with the contacting being carried out via chemical vapor deposition or atomic layer deposition. Various tellurium, germanium and germanium-tellurium precursors are described, which are useful for forming GST phase change memory films on substrates.
    Type: Application
    Filed: March 12, 2007
    Publication date: May 14, 2009
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Jeffrey F. Roeder, Thomas H. Baum, Bryan C. Hendrix, Gregory T. Stauf, Chongying Xu, William Hunks, Tianniu Chen, Matthias Stender
  • Patent number: 7531679
    Abstract: Silicon precursors for forming silicon-containing films in the manufacture of semiconductor devices, such as low dielectric constant (k) thin films, high k gate silicates, low temperature silicon epitaxial films, and films containing silicon nitride (Si3N4), siliconoxynitride (SiOxNy) and/or silicon dioxide (SiO2). The precursors of the invention are amenable to use in low temperature (e.g., <500° C.) chemical vapor deposition processes, for fabrication of ULSI devices and device structures.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: May 12, 2009
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ziyun Wang, Chongying Xu, Ravi K. Laxman, Thomas H. Baum, Bryan Hendrix, Jeffrey Roeder
  • Patent number: 7531031
    Abstract: Copper (I) amidinate precursors for forming copper thin films in the manufacture of semiconductor devices, and a method of depositing the copper (I) amidinate precursors on substrates using chemical vapor deposition or atomic layer deposition processes.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: May 12, 2009
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Chongying Xu, Alexander S. Borovik, Thomas H. Baum
  • Publication number: 20090118153
    Abstract: A liquid removal composition and process for removing photoresist and/or sacrificial anti-reflective coating (SARC) material from a microelectronic device having same thereon. The liquid removal composition includes at least one organic quaternary base and at least one surface interaction enhancing additive. The composition achieves at least partial removal of photoresist and/or SARC material in the manufacture of integrated circuitry with minimal etching of metal species on the microelectronic device, such as copper and cobalt, and without damage to low-k dielectric materials employed in the microelectronic device architecture.
    Type: Application
    Filed: October 12, 2006
    Publication date: May 7, 2009
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Melissa K. Rath, David D. Bernhard, Thomas H. Baum, Ping Jiang, Renjie Zhou, Michael B. Korzenski
  • Patent number: 7517809
    Abstract: A method and composition for removing silicon-containing sacrificial layers from Micro Electro Mechanical System (MEMS) and other semiconductor substrates having such sacrificial layers is described. The etching compositions include a supercritical fluid (SCF), an etchant species, a co-solvent, and optionally a surfactant. Such etching compositions overcome the intrinsic deficiency of SCFs as cleaning reagents, viz., the non-polar character of SCFs and their associated inability to solubilize polar species that must be removed from the semiconductor substrate. The resultant etched substrates experience lower incidents of stiction relative to substrates etched using conventional wet etching techniques.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: April 14, 2009
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Michael B. Korzenski, Thomas H. Baum, Chongying Xu, Eliodor G. Ghenciu
  • Publication number: 20090084288
    Abstract: This invention relates to silicon precursor compositions for forming silicon-containing films by low temperature (e.g., <300° C.) chemical vapor deposition processes for fabrication of ULSI devices and device structures. Such silicon precursor compositions comprise at least one disilane derivative compound that is fully substituted with alkylamino and/or dialkylamino functional groups.
    Type: Application
    Filed: October 7, 2008
    Publication date: April 2, 2009
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Ziyun Wang, Chongying Xu, Thomas H. Baum, Bryan Hendrix, Jeffrey F. Roeder
  • Publication number: 20090087561
    Abstract: Metal and metalloid precursors useful for forming metal-containing films on substrates, including amide precursors, tetraalkylguanidinate precursors, ketimate and dianionic guanidinate precursors. The precursors of the invention are readily formed and conveniently used to carry out chemical vapor deposition or atomic layer deposition at low temperature, e.g., at temperature below 400° C.
    Type: Application
    Filed: September 28, 2008
    Publication date: April 2, 2009
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Tianniu CHEN, Chongying Xu, William Hunks, Jeffrey F. Roeder, Thomas H. Baum
  • Publication number: 20090074965
    Abstract: Barium, strontium, tantalum and lanthanum precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of titanate thin films. The precursors have the formula M(Cp)2, wherein M is strontium, barium, tantalum or lanthanum, and Cp is cyclopentadienyl, of the formula (I), wherein each of R1-R5 is the same as or different from one another, with each being independently selected from among hydrogen, C1-C12 alkyl, C1-C12 amino, C6-C10 aryl, C1-C12 alkoxy, C3-C6 alkylsilyl, C2-C12 alkenyl, R1R2R3NNR3, wherein R1, R2 and R3 may be the same as or different from one another and each is independently selected from hydrogen and C1-C6 alkyl, and pendant ligands including functional group(s) providing further coordination to the metal center M. The precursors of the above formula are useful to achieve uniform coating of high dielectric constant materials in the manufacture of flash memory and other microelectronic devices.
    Type: Application
    Filed: March 12, 2007
    Publication date: March 19, 2009
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Chongying Xu, Tianniu Chen, Thomas M. Cameron, Jeffrey F. Roeder, Thomas H. Baum
  • Publication number: 20090032952
    Abstract: Tantalum compounds of Formula I hereof are disclosed, having utility as precursors for forming tantalum-containing films such as barrier layers. The tantalum compounds of Formula I may be deposited by CVD or ALD for forming semiconductor device structures including a dielectric layer, a barrier layer on the dielectric layer, and a copper metallization on the barrier layer, wherein the barrier layer includes a Ta-containing layer and sufficient carbon so that the Ta-containing layer is amorphous. According to one embodiment, the semiconductor device structure is fabricated by depositing the Ta-containing barrier layer, via CVD or ALD, from a precursor including the tantalum compound of Formula I hereof at a temperature below about 400° C. in a reducing or inert atmosphere, e.g., a gas or plasma optionally containing a reducing agent.
    Type: Application
    Filed: January 12, 2008
    Publication date: February 5, 2009
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Tianniu Chen, Chongying Xu, Jeffrey F. Roeder, Thomas H. Baum
  • Patent number: 7485611
    Abstract: Compositions and methods employing supercritical fluids, e.g., supercritical carbon dioxide, for removal of unwanted material from microelectronic device structures and process equipment. One composition of such type, having utility for removing flux and solder perform surface films, includes supercritical fluid, e.g., supercritical CO2, and organic co-solvent, e.g., xylene. Another composition of such type having utility for removal of metals, metal oxides, metal-containing post-etch residues and CMP particles from semiconductor substrates includes supercritical fluid and at least one ?-diketone.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: February 3, 2009
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Jeffrey F. Roeder, Thomas H. Baum, Matthew Healy, Chongying Xu
  • Patent number: 7475588
    Abstract: A gas detector and process for detecting a fluorine-containing species in a gas containing same, e.g., an effluent of a semiconductor processing tool undergoing etch cleaning with HF, NF3, etc. The detector in a preferred structural arrangement employs a microelectromechanical system (MEMS)-based device structure and/or a free-standing metal element that functions as a sensing component and optionally as a heat source when elevated temperature sensing is required. The free-standing metal element can be fabricated directly onto a standard chip carrier/device package so that the package becomes a platform of the detector.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: January 13, 2009
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Frank Dimeo, Jr., Philip S. H. Chen, Jeffrey W. Neuner, James Welch, Michele Stawacz, Thomas H. Baum, Mackenzie E. King, Ing-Shin Chen, Jeffrey F. Roeder