Patents by Inventor Thomas J. Haigh

Thomas J. Haigh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9735005
    Abstract: A method for depositing a dielectric layer that includes introducing a substrate into a process chamber of a deposition tool; and heating the substrate to a process temperature. The method may further include introducing precursors that include at least one dielectric providing gas species for a deposited layer and at least one hydrogen precursor gas into the process chamber of the deposition tool. The hydrogen precursor gas is introduced to the deposition chamber at a flow rate ranging from 50 sccm to 5000 sccm. The molar ratio for Hydrogen/Silicon gas precursor can be equal or greater than 0.05.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: August 15, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas J. Haigh, Jr., Son V. Nguyen, Deepika Priyadarshini, Hosadurga Shobha
  • Patent number: 9502288
    Abstract: An interconnect structure is provided that has improved electromigration resistance as well as methods of forming such an interconnect structure. The interconnect structure includes a composite M-MOx cap located at least on the upper surface of the Cu-containing material within the at least one opening. The composite M-MOx cap includes an upper region that is composed of the metal having a higher affinity for oxygen than copper and copper oxide and a lower region that is composed of a non-stoichiometric oxide of said metal.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: November 22, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Son Van Nguyen, Alfred Grill, Thomas J. Haigh, Jr., Hosadurga Shobha, Tuan A. Vo
  • Patent number: 9312224
    Abstract: A porous low k dielectric material containing atoms of at least Si, C, N and H (C and/or O may also be present) is used to provide an interconnect structure having reduced BEOL capacitance and resistance. The porous low k dielectric material is used as an interconnect dielectric material in which at least one interconnect metal-containing structure is embedded therein. The porous low k dielectric material has metal diffusion barrier properties due to the presence of nitrogen as an elemental constituent of the porous low k dielectric material. As such, the porous low k dielectric material can eliminate the need of a diffusion barrier liner, or reduce the thickness of the diffusion barrier liner that is typically formed between an interconnect dielectric material and the embedded interconnect metal structure.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: April 12, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Donald F. Canaperi, Alfred Grill, Thomas J. Haigh, Son V. Nguyen, Takeshi Nogami, Deepika Priyadarshini, Hosadurga Shobha, Matthew T. Shoudy
  • Patent number: 9105642
    Abstract: A dielectric stack and method of depositing the stack to a substrate using a single step deposition process. The dielectric stack includes a dense layer and a porous layer of the same elemental compound with different compositional atomic percentage, density, and porosity. The stack enhances mechanical modulus strength and enhances oxidation and copper diffusion barrier properties. The dielectric stack has inorganic or hybrid inorganic-organic random three-dimensional covalent bonding throughout the network, which contain different regions of different chemical compositions such as a cap component adjacent to a low-k component of the same type of material but with higher porosity.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: August 11, 2015
    Assignee: International Business Machines Corporation
    Inventors: Griselda Bonilla, Alfred Grill, Thomas J. Haigh, Jr., Satyanarayana V. Nitta, Son Nguyen
  • Patent number: 9018767
    Abstract: A dielectric stack and method of depositing the stack to a substrate using a single step deposition process. The dielectric stack includes a dense layer and a porous layer of the same elemental compound with different compositional atomic percentage, density, and porosity. The stack enhances mechanical modulus strength and enhances oxidation and copper diffusion barrier properties. The dielectric stack has inorganic or hybrid inorganic-organic random three-dimensional covalent bonding throughout the network, which contain different regions of different chemical compositions such as a cap component adjacent to a low-k component of the same type of material but with higher porosity.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: April 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: Griselda Bonilla, Alfred Grill, Thomas J. Haigh, Jr., Satyanarayana V. Nitta, Son Nguyen
  • Publication number: 20140284815
    Abstract: A dielectric stack and method of depositing the stack to a substrate using a single step deposition process. The dielectric stack includes a dense layer and a porous layer of the same elemental compound with different compositional atomic percentage, density, and porosity. The stack enhances mechanical modulus strength and enhances oxidation and copper diffusion barrier properties. The dielectric stack has inorganic or hybrid inorganic-organic random three-dimensional covalent bonding throughout the network, which contain different regions of different chemical compositions such as a cap component adjacent to a low-k component of the same type of material but with higher porosity.
    Type: Application
    Filed: May 23, 2014
    Publication date: September 25, 2014
    Applicant: International Business Machines Corporation
    Inventors: Griselda Bonilla, Alfred Grill, Thomas J. Haigh, JR., Satyanarayana V. Nitta, Son Nguyen
  • Publication number: 20140256154
    Abstract: A dielectric stack and method of depositing the stack to a substrate using a single step deposition process. The dielectric stack includes a dense layer and a porous layer of the same elemental compound with different compositional atomic percentage, density, and porosity. The stack enhances mechanical modulus strength and enhances oxidation and copper diffusion barrier properties. The dielectric stack has inorganic or hybrid inorganic-organic random three-dimensional covalent bonding throughout the network, which contain different regions of different chemical compositions such as a cap component adjacent to a low-k component of the same type of material but with higher porosity.
    Type: Application
    Filed: May 23, 2014
    Publication date: September 11, 2014
    Applicant: International Business Machines Corporation
    Inventors: Griselda Bonilla, Alfred Grill, Thomas J. Haigh, JR., Satyanarayana V. Nitta, Son Nguyen
  • Patent number: 8779600
    Abstract: A dielectric stack and method of depositing the stack to a substrate using a single step deposition process. The dielectric stack includes a dense layer and a porous layer of the same elemental compound with different compositional atomic percentage, density, and porosity. The stack enhances mechanical modulus strength and enhances oxidation and copper diffusion barrier properties. The dielectric stack has inorganic or hybrid inorganic-organic random three-dimensional covalent bonding throughout the network, which contain different regions of different chemical compositions such as a cap component adjacent to a low-k component of the same type of material but with higher porosity.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: July 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Son Van Nguyen, Griselda Bonilla, Alfred Grill, Thomas J. Haigh, Jr., Satyanarayana V. Nitta
  • Patent number: 8652950
    Abstract: A carbon-rich carbon boron nitride dielectric film having a dielectric constant of equal to, or less than 3.6 is provided that can be used as a component in various electronic devices. The carbon-rich carbon boron nitride dielectric film has a formula of CxByNz wherein x is 35 atomic percent or greater, y is from 6 atomic percent to 32 atomic percent and z is from 8 atomic percent to 33 atomic percent.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: February 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Son Van Nguyen, Alfred Grill, Thomas J. Haigh, Jr., Sanjay Mehta
  • Publication number: 20130333923
    Abstract: A layer of silicon nitride having a thickness from 0.5 nanometers to 2.4 nanometers is deposited on a substrate. A plasma nitridation process is carried out on the layer. These steps are repeated for a plurality of additional layers of silicon nitride, until a predetermined thickness is attained. Such steps can be used to provide a multilayer silicon nitride dielectric formed on a substrate having an upper surface of dielectric material with Cu and other conductors embedded within, and a plurality of steps. The multilayer silicon nitride dielectric has a plurality of individual layers each having a thickness from 0.5 nanometers to 2.4 nanometers, and the multilayer silicon nitride dielectric conformally covers the steps of the substrate with a conformality of at least seventy percent. A multilayer silicon nitride dielectric, and a multilevel back end of line interconnect wiring structure using same, are also provided.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 19, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mihaela Balseanu, Stephan A. Cohen, Alfred Grill, Thomas J. Haigh, JR., Son V. Nguyen, Mei-Yee Shek, Hosadurga Shobha, Li-Qun Xia
  • Patent number: 8536069
    Abstract: The present disclosure provides a multilayered cap (i.e., migration barrier) that conforms to the substrate (i.e., interconnect structure) below. The multilayered cap, which can be located atop at least one interconnect level of an interconnect structure, includes, from bottom to top, a first layer comprising silicon nitride and a second layer comprising at least one of boron nitride and carbon boron nitride.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: September 17, 2013
    Assignees: International Business Machines Corporation, Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Stephan A. Cohen, Alfred Grill, Thomas J. Haigh, Jr., Son V. Nguyen, Li-Qun Xia
  • Patent number: 8492880
    Abstract: The present disclosure provides a multilayered cap (i.e., migration barrier) that conforms to the substrate (i.e., interconnect structure) below. The multilayered cap, which can be located atop at least one interconnect level of an interconnect structure, includes, from bottom to top, a first layer comprising silicon nitride and a second layer comprising at least one of boron nitride and carbon boron nitride.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: July 23, 2013
    Assignees: International Business Machines Corporation, Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Stephan A. Cohen, Alfred Grill, Thomas J. Haigh, Jr., Son V. Nguyen, Li-Qun Xia
  • Publication number: 20130175697
    Abstract: A dielectric stack and method of depositing the stack to a substrate using a single step deposition process. The dielectric stack includes a dense layer and a porous layer of the same elemental compound with different compositional atomic percentage, density, and porosity. The stack enhances mechanical modulus strength and enhances oxidation and copper diffusion barrier properties. The dielectric stack has inorganic or hybrid inorganic-organic random three-dimensional covalent bonding throughout the network, which contain different regions of different chemical compositions such as a cap component adjacent to a low-k component of the same type of material but with higher porosity.
    Type: Application
    Filed: January 5, 2012
    Publication date: July 11, 2013
    Applicant: International Business Machines Corporation
    Inventors: Son Van Nguyen, Griselda Bonilla, Alfred Grill, Thomas J. Haigh, JR., Satyanarayana V. Nitta
  • Patent number: 8476743
    Abstract: A carbon-rich carbon boron nitride dielectric film having a dielectric constant of equal to, or less than 3.6 is provided that can be used as a component in various electronic devices. The carbon-rich carbon boron nitride dielectric film has a formula of CxByNz wherein x is 35 atomic percent or greater, y is from 6 atomic percent to 32 atomic percent and z is from 8 atomic percent to 33 atomic percent.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: July 2, 2013
    Assignee: International Business Machines Corporation
    Inventors: Son Van Nguyen, Alfred Grill, Thomas J. Haigh, Jr., Sanjay Mehta
  • Publication number: 20130062753
    Abstract: A carbon-rich carbon boron nitride dielectric film having a dielectric constant of equal to, or less than 3.6 is provided that can be used as a component in various electronic devices. The carbon-rich carbon boron nitride dielectric film has a formula of CxByNz wherein x is 35 atomic percent or greater, y is from 6 atomic percent to 32 atomic percent and z is from 8 atomic percent to 33 atomic percent.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 14, 2013
    Applicant: International Business Machines Corporation
    Inventors: Son Van Nguyen, Alfred Grill, Thomas J. Haigh, JR., Sanjay Mehta
  • Publication number: 20130043514
    Abstract: A multiphase ultra low k dielectric process incorporating an organo-silicon precursor including an organic porogen, high frequency radio frequency power just above plasma initiation in a PECVD chamber and energy post treatment. A porous SiCOH dielectric material having a k less than 2.7 and a modulus of elasticity greater than 7 GPa. A graded carbon adhesion layer of SiO2 and porous SiCOH.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Applicant: International Business Machines Corporation
    Inventors: Alfred Grill, Thomas J. Haigh, JR., Kelly Malone, Son V. Nguyen, Vishnubhai V. Patel, Hosadurga Shobha
  • Patent number: 8362596
    Abstract: A dielectric capping layer having a dielectric constant of less than 4.2 is provided that exhibits a higher mechanical and electrical stability to UV and/or E-Beam radiation as compared to conventional dielectric capping layers. Also, the dielectric capping layer maintains a consistent compressive stress upon post-deposition treatments. The dielectric capping layer includes a tri-layered dielectric material in which at least one of the layers has good oxidation resistance, is resistance to conductive metal diffusion, and exhibits high mechanical stability under at least UV curing. The low k dielectric capping layer also includes nitrogen content layers that contain electron donors and double bond electrons. The low k dielectric capping layer also exhibits a high compressive stress and high modulus and is stable under post-deposition curing treatments, which leads to less film and device cracking and improved device reliability.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: January 29, 2013
    Assignee: International Business Machines Corporation
    Inventors: Stephan A. Cohen, Alfred Grill, Thomas J. Haigh, Jr., Xiao H. Liu, Son V. Nguyen, Thomas M. Shaw, Hosadurga Shobha
  • Publication number: 20130005146
    Abstract: The present disclosure provides a multilayered cap (i.e., migration barrier) that conforms to the substrate (i.e., interconnect structure) below. The multilayered cap, which can be located atop at least one interconnect level of an interconnect structure, includes, from bottom to top, a first layer comprising silicon nitride and a second layer comprising at least one of boron nitride and carbon boron nitride.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicants: Applied Materials, Inc., International Business Machines Corporation
    Inventors: Mihaela Balseanu, Stephan A. Cohen, Alfred Grill, Thomas J. Haigh, JR., Son Nguyen, Li-Qun Xia
  • Patent number: 8299365
    Abstract: An interconnect structure is provided that has improved electromigration resistance as well as methods of forming such an interconnect structure. The interconnect structure includes an interconnect dielectric material having a dielectric constant of about 4.0 or less. The interconnect dielectric material has at least one opening therein that is filled with a Cu-containing material. The Cu-containing material within the at least one opening has an exposed upper surface that is co-planar with an upper surface of the interconnect dielectric material. The interconnect structure further includes a composite M-MOx cap located at least on the upper surface of the Cu-containing material within the at least one opening. The composite M-MOx cap includes an upper region that is composed of the metal having a higher affinity for oxygen than copper and copper oxide and a lower region that is composed of a non-stoichiometric oxide of said metal.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Son Van Nguyen, Alfred Grill, Thomas J. Haigh, Jr., Hosadurga Shobha, Tuan A. Vo
  • Publication number: 20120248617
    Abstract: The present disclosure provides a multilayered cap (i.e., migration barrier) that conforms to the substrate (i.e., interconnect structure) below. The multilayered cap, which can be located atop at least one interconnect level of an interconnect structure, includes, from bottom to top, a first layer comprising silicon nitride and a second layer comprising at least one of boron nitride and carbon boron nitride.
    Type: Application
    Filed: April 1, 2011
    Publication date: October 4, 2012
    Applicants: APPLIED MATERIALS, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mihaela Balseanu, Stephan A. Cohen, Alfred Grill, Thomas J. Haigh, JR., Son V. Nguyen, Li-Qun Xia