Patents by Inventor Thomas Knisley

Thomas Knisley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200006056
    Abstract: Chromium containing precursors and methods of forming chromium-containing thin films are described. The chromium precursor has a chromium-diazadiene bond or cyclopentadienyl ligand and is homoleptic or heteroleptic. A suitable reactant is used to provide one of a metallic chromium film or a film comprising one or more of an oxide, nitride, carbide, boride and/or silicide. Methods of forming ternary materials comprising chromium with two or more of oxygen, nitrogen, carbon, boron, silicon, titanium, ruthenium and/or tungsten are also described. Methods of filling gaps in a substrate with a chromium-containing film are also described.
    Type: Application
    Filed: June 28, 2019
    Publication date: January 2, 2020
    Inventors: Thomas Knisley, Mark Saly, Lakmal C. Kalutarage, David Thompson
  • Publication number: 20200002814
    Abstract: Tin containing precursors and methods of forming tin-containing thin films are described. The tin precursor has a tin-diazadiene bond and is homoleptic or heteroleptic. A suitable reactant is used to provide one of a metallic tin film or a film comprising one or more of an oxide, nitride, carbide, boride and/or silicide. Methods of forming ternary materials comprising tin with two or more of oxygen, nitrogen, carbon, boron, silicon, titanium, ruthenium and/or tungsten are also described.
    Type: Application
    Filed: June 28, 2019
    Publication date: January 2, 2020
    Inventors: Thomas Knisley, Mark Saly, David Thompson
  • Publication number: 20190316256
    Abstract: Methods of depositing a film selectively onto a first substrate surface relative to a second substrate surface are described. The methods include exposing the substrate surfaces to a blocking compound to selectively form a blocking layer on at least a portion of the first surface over the second surface. The substrate is sequentially exposed to a metal precursor with a kinetic diameter in excess of 21 angstroms and a reactant to selectively form a metal-containing layer on the second surface over the blocking layer or the first surface. The relatively larger metal precursors of some embodiments allow for the use of blocking layers with gaps or voids without the loss of selectivity.
    Type: Application
    Filed: April 12, 2019
    Publication date: October 17, 2019
    Inventors: Bhaskar Jyoti Bhuyan, Mark Saly, David Thompson, Tobin Kaufman-Osborn, Kurt Fredrickson, Thomas Knisley, Liqi Wu
  • Publication number: 20190284694
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on an aerospace component and methods for depositing the protective coatings. In one or more embodiments, a method for depositing a protective coating on an aerospace component includes sequentially exposing the aerospace component to a chromium precursor and a reactant to form a chromium-containing layer on a surface the aerospace component by an atomic layer deposition process. The chromium-containing layer contains metallic chromium, chromium oxide, chromium nitride, chromium carbide, chromium silicide, or any combination thereof.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 19, 2019
    Inventors: Thomas KNISLEY, Mark SALY, David Alexander BRITZ, David THOMPSON
  • Publication number: 20190284686
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on an aerospace component and methods for depositing the protective coatings. In one or more embodiments, a method for depositing a coating on an aerospace component includes exposing an aerospace component to a first precursor and a first reactant to form a first deposited layer on a surface of the aerospace component by a chemical vapor deposition (CVD) process or a first atomic layer deposition (ALD) process and exposing the aerospace component to a second precursor and a second reactant to form a second deposited layer on the first deposited layer by a second ALD process, where the first deposited layer and the second deposited layer have different compositions from each other.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 19, 2019
    Inventors: Yuriy MELNIK, Sukti CHATTERJEE, Kaushal GANGAKHEDKAR, Jonathan FRANKEL, Lance A. SCUDDER, Pravin K. NARWANKAR, David Alexander BRITZ, Thomas KNISLEY, Mark SALY, David THOMPSON
  • Publication number: 20190055650
    Abstract: Metal coordination complexes comprising an iridium atom coordinated to at least one diazabutadiene based ligand having a structure represented by: where R1 and R4 are independently selected from the group consisting of C1-C4 alkyl and amino groups, and each of R2 and R3 are independently selected from the group consisting of H, C1-C3 alkyl, or amino groups are described. Processing methods using the metal coordination complexes are also described.
    Type: Application
    Filed: October 22, 2018
    Publication date: February 21, 2019
    Inventor: Thomas Knisley
  • Publication number: 20190017171
    Abstract: Methods for depositing a yttrium-containing film through an atomic layer deposition process are described. Some embodiments of the disclosure utilize a plasma-enhanced atomic layer deposition process. Also described is an apparatus for performing the atomic layer deposition of the yttrium containing films.
    Type: Application
    Filed: July 13, 2017
    Publication date: January 17, 2019
    Inventors: Lakmal C. Kalutarage, Mark Saly, Thomas Knisley, Benjamin Schmiege, David Thompson
  • Patent number: 10106893
    Abstract: Metal coordination complexes comprising an iridium atom coordinated to at least one diazabutadiene based ligand having a structure represented by: where R1 and R4 are independently selected from the group consisting of C1-C4 alkyl and amino groups, and each of R2 and R3 are independently selected from the group consisting of H, C1-C3 alkyl, or amino groups are described. Processing methods using the metal coordination complexes are also described.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: October 23, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Thomas Knisley
  • Publication number: 20180291504
    Abstract: Metal coordination complexes comprising an iridium atom coordinated to at least one diazabutadiene based ligand having a structure represented by: where R1 and R4 are independently selected from the group consisting of C1-C4 alkyl and amino groups, and each of R2 and R3 are independently selected from the group consisting of H, C1-C3 alkyl, or amino groups are described. Processing methods using the metal coordination complexes are also described.
    Type: Application
    Filed: April 7, 2017
    Publication date: October 11, 2018
    Inventor: Thomas Knisley
  • Publication number: 20170323775
    Abstract: Methods of forming SiCON films comprising sequential exposure to a silicon precursor and a mixture of alkanolamine and amine reactants and an optional plasma are described. Methods of forming a silicon-containing film comprising sequential exposure to a silicon precursor and an epoxide with an optional plasma exposure are also described.
    Type: Application
    Filed: April 13, 2017
    Publication date: November 9, 2017
    Inventors: Mark Saly, David Thompson, Thomas Knisley, Bhaskar Jyoti Bhuyan
  • Publication number: 20170022609
    Abstract: Tungsten precursors represented by the formula W(ND)x(DAD)yRz, where each ND is a neutral donor, each DAD is a diazadiene, each R is an anionic or dianionic ligand and x is in the range of 0 to 4, y is in the range of 1 to 3, z is in the range of 0 to 4 and x+z is greater than or equal to 1. Methods of depositing a film using the tungsten precursors are provided.
    Type: Application
    Filed: July 20, 2016
    Publication date: January 26, 2017
    Inventors: Thomas Knisley, David Thompson