Patents by Inventor Thomas Landers

Thomas Landers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250095286
    Abstract: Three-dimensional (3D) information is generated from two or more two-dimensional (2D) images. In the 2D images, one or more objects are identified, and either a corresponding portion of the 3D information representing the same object is identified and/or where the 3D information is corrected correspondingly. The correction may be the leaving out of 3D information representing the object or the correction of the 3D information based on knowledge of a shape of the object.
    Type: Application
    Filed: September 15, 2023
    Publication date: March 20, 2025
    Inventors: Daniel David WILLIAMS, Stephen Paul Elizondo LANDERS, John Paul Thomas ATKINSON
  • Patent number: 12181489
    Abstract: A method of checking accuracy of an air data probe system onboard a vehicle is disclosed. An embodiment of the method involves: calculating airspeed measurements from air data provided by the probe system; calculating vehicle speed measurements based on sensor data collected from at least one sensor system onboard the vehicle, wherein the vehicle speed measurements are distinct and independent of the airspeed measurements, and the vehicle speed measurements are calculated without using the air data; comparing a calculated airspeed measurement against a calculated vehicle speed measurement to obtain a speed difference, wherein the calculated airspeed measurement and the calculated vehicle speed measurement correspond to a measurement time during which the vehicle is moving forward; and initiating at least one corrective action onboard the vehicle when magnitude of the speed difference exceeds a threshold value.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: December 31, 2024
    Assignee: GULFSTREAM AEROSPACE CORPORATION
    Inventors: Thomas Landers, Michael Malluck
  • Publication number: 20240296745
    Abstract: A projected recovery trajectory for an aircraft autopilot system is precomputed by providing a stored set of predefined recovery mode segments, including: a mode 1 segment that models the aircraft coasting; a mode 2 segment that models the aircraft executing a nose high recovery; a mode 3 segment that models the aircraft executing a nose low recovery; a mode 4 segment that models the aircraft executing a throttle only recovery; and a mode 5 segment that models the aircraft executing a terrain avoidance recovery. A processor generates at least one projected recovery trajectory based on a current state of the aircraft, where the processor selectively concatenates selected ones of the predefined recovery mode segments into a sequence and uses that sequence to generate the projected trajectory.
    Type: Application
    Filed: May 9, 2024
    Publication date: September 5, 2024
    Applicant: Gulfstream Aerospace Corporation
    Inventors: Kevin Prosser, Thomas Landers, Abhishek Vaidya, Blake Finlayson, Alborz Sakhaei
  • Patent number: 12048738
    Abstract: The present invention relates to an active (immunostimulatory) composition comprising at least one RNA, preferably an mRNA, encoding at least two (preferably different) antigens capable of eliciting an (adaptive) immune response in a mammal wherein the antigens are selected from the group consisting of PSA (Prostate-Specific Antigen), PSMA (Prostate-Specific Membrane Antigen), PSCA (Prostate Stem Cell Antigen), and STEAP (Six Transmembrane Epithelial Antigen of the Prostate), The invention furthermore relates to a vaccine comprising an active (immunostimulatory) composition, and to the use of the active (immunostimulatory) composition (for the preparation of a vaccine) and/or of the vaccine for eliciting an (adaptive) immune response for the treatment of prostate cancer (PCa), preferably of neoadjuvant and/or hormone-refractory prostate cancers, and diseases or disorders related thereto.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: July 30, 2024
    Assignee: CureVac SE
    Inventors: Jochen Probst, Ingmar Hoerr, Thomas Lander
  • Patent number: 11990049
    Abstract: A projected recovery trajectory for an aircraft autopilot system is precomputed by providing a stored set of predefined recovery mode segments, including: a mode 1 segment that models the aircraft coasting; a mode 2 segment that models the aircraft executing a nose high recovery; a mode 3 segment that models the aircraft executing a nose low recovery; a mode 4 segment that models the aircraft executing a throttle only recovery; and a mode 5 segment that models the aircraft executing a terrain avoidance recovery. A processor generates at least one projected recovery trajectory based on a current state of the aircraft, where the processor selectively concatenates selected ones of the predefined recovery mode segments into a sequence and uses that sequence to generate the projected trajectory.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: May 21, 2024
    Assignee: GULFSTREAM AEROSPACE CORPORATION
    Inventors: Kevin Prosser, Thomas Landers, Abhishek Vaidya, Blake Finlayson, Alborz Sakhaei
  • Patent number: 11900824
    Abstract: The aircraft threat envelope protection system employs a threat envelope data structure in a computer-readable medium that stores at least one trigger condition for each of a plurality of different types of threats associated with the aircraft, and modeled using a common schema. A processor computes plural different projected trajectories representing different possible aircraft paths through spacetime. The processor associates at least some of the plurality of the threats to specific trigger points in spacetime along each of the projected trajectories. The processor will deprecate ones of the projected trajectories when they are deemed not viable to recover from a threat. The processor initiates an aircraft protective response when all projected trajectories but one have been deprecated and the aircraft is within a predetermined proximity to the closest trigger point in spacetime along the non-deprecated trajectory.
    Type: Grant
    Filed: April 3, 2023
    Date of Patent: February 13, 2024
    Assignee: GULFSTREAM AEROSPACE CORPORATION
    Inventors: Kevin Prosser, Thomas Landers, Abhishek Vaidya, Alborz Sakhaei, Blake Finlayson
  • Publication number: 20230358779
    Abstract: A method of checking accuracy of an air data probe system onboard a vehicle is disclosed. An embodiment of the method involves: calculating airspeed measurements from air data provided by the probe system; calculating vehicle speed measurements based on sensor data collected from at least one sensor system onboard the vehicle, wherein the vehicle speed measurements are distinct and independent of the airspeed measurements, and the vehicle speed measurements are calculated without using the air data; comparing a calculated airspeed measurement against a calculated vehicle speed measurement to obtain a speed difference, wherein the calculated airspeed measurement and the calculated vehicle speed measurement correspond to a measurement time during which the vehicle is moving forward; and initiating at least one corrective action onboard the vehicle when magnitude of the speed difference exceeds a threshold value.
    Type: Application
    Filed: May 9, 2022
    Publication date: November 9, 2023
    Applicant: Gulfstream Aerospace Corporation
    Inventors: Thomas Landers, Michael Malluck
  • Publication number: 20230245576
    Abstract: The aircraft threat envelope protection system employs a threat envelope data structure in a computer-readable medium that stores at least one trigger condition for each of a plurality of different types of threats associated with the aircraft, and modeled using a common schema. A processor computes plural different projected trajectories representing different possible aircraft paths through spacetime. The processor associates at least some of the plurality of the threats to specific trigger points in spacetime along each of the projected trajectories. The processor will deprecate ones of the projected trajectories when they are deemed not viable to recover from a threat. The processor initiates an aircraft protective response when all projected trajectories but one have been deprecated and the aircraft is within a predetermined proximity to the closest trigger point in spacetime along the non-deprecated trajectory.
    Type: Application
    Filed: April 3, 2023
    Publication date: August 3, 2023
    Applicant: Gulfstream Aerospace Corporation
    Inventors: Kevin Prosser, Thomas Landers, Abhishek Vaidya, Alborz Sakhaei, Blake Finlayson
  • Patent number: 11651699
    Abstract: The aircraft threat envelope protection system employs a threat envelope data structure in a computer-readable medium that stores at least one trigger condition for each of a plurality of different types of threats associated with the aircraft, and modeled using a common schema. A processor computes plural different projected trajectories representing different possible aircraft paths through spacetime. The processor associates at least some of the plurality of the threats to specific trigger points in spacetime along each of the projected trajectories. The processor will deprecate ones of the projected trajectories when they are deemed not viable to recover from a threat. The processor initiates an aircraft protective response when all projected trajectories but one have been deprecated and the aircraft is within a predetermined proximity to the closest trigger point in spacetime along the non-deprecated trajectory.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: May 16, 2023
    Assignee: Gulfstream Aerospace Corporation
    Inventors: Kevin Prosser, Thomas Landers, Abhishek Vaidya, Alborz Sakhaei, Blake Finlayson
  • Patent number: 11592839
    Abstract: The processor supplies flight commands to the flight control system by selectively blending pilot input with control signals from the autopilot. The processor generates a projected recovery trajectory through successive iterations, each beginning at the current aircraft location and using a recovery constraint selectable by the processor to influences a degree of flight aggressiveness. A detection system that identifies and invokes a state of threat existence if a threat exists along the projected recovery trajectory. The processor during threat existence in a first iteration commands an initial soft recovery, with permitted blended pilot input. If the threat exists on subsequent iteration, the processor commands a more aggressive recovery while attenuating blended pilot input.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: February 28, 2023
    Assignee: Gulfstream Aerospace Corporation
    Inventors: Kevin Prosser, Thomas Landers, Alborz Sakhaei, Abhishek Vaidya, Blake Finlayson
  • Patent number: 11535365
    Abstract: An aircraft includes a processor, an airframe, a pitch attitude flight control surface coupled with the airframe, a nose wheel coupled with the airframe, main wheels coupled with the airframe, and a brake system coupled with the main wheels. The processor is programmed to determine that the aircraft has entered a braking segment of a landing phase of a flight of the aircraft while the aircraft is on a ground surface and to command the pitch attitude flight control surface with a nose up command during the braking segment in response to determining that the aircraft has entered the braking segment. The nose up command causes the pitch attitude flight control surface to generate a downforce that increases traction between the main wheels and the ground surface due to a weight shift from the nose wheel to the main wheels and directly due to the downforce on the main wheels.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: December 27, 2022
    Assignee: Gulfstream Aerospace Corporation
    Inventors: Scott Buethe, Thomas Landers, Alex Rummel
  • Publication number: 20220096616
    Abstract: The present invention relates to an active (immunostimulatory) composition comprising at least one RNA, preferably a mRNA, encoding at least two (preferably different) antigens capable of eliciting an (adaptive) immune response in a mammal. The invention furthermore relates to a vaccine comprising said active (immunostimulatory) composition, and to the use of said active (immunostimulatory) composition (for the preparation of a vaccine) and/or of the vaccine for eliciting an (adaptive) immune response for the treatment of lung cancer, particularly of non-small cell lung cancers (NSCLC), preferably selected from the three main sub-types squamous cell lung carcinoma, adenocarcinoma and large cell lung carcinoma, or of disorders related thereto. Finally, the invention relates to kits, particularly to kits of parts, containing the active (immunostimulatory) composition and/or the vaccine.
    Type: Application
    Filed: July 19, 2021
    Publication date: March 31, 2022
    Applicant: CureVac AG
    Inventors: Marijke BARNER, Jochen PROBST, Thomas LANDER, Ingmar HOERR
  • Patent number: 11260959
    Abstract: Aircraft, auto speed brake control systems, and methods for controlling drag of an aircraft are provided. In one example, an aircraft includes an aircraft structure. A drag device is operatively coupled to the aircraft structure between a stowed and a deployed position and/or an intermediate deployed position. A speed brake controller is in communication with the drag device to control movement. An autothrottle-autospeedbrake controller is in communication with the speed brake controller and is configured to receive data signals. The autothrottle-autospeedbrake controller is operative to direct the speed brake controller to control movement of the drag device between the stowed position and the deployed position and/or the intermediate deployed position in response to at least one of the data signals.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: March 1, 2022
    Assignee: Gulfstream Aerospace Corporation
    Inventors: Thomas Landers, Michael Malluck
  • Publication number: 20220024601
    Abstract: A flight control system for controlling an aircraft during a variable engine thrust takeoff operation operative to perform a method including calculating a calculated acceleration in response to a takeoff distance and a selection of a variable engine thrust takeoff mode, generating an initial thrust control signal in response to the calculated acceleration, controlling a thrust of an aircraft engine in response to the initial thrust control signal, measuring a measured acceleration of the aircraft, generating an updated thrust control signal in response to a difference between the calculated acceleration and the measured acceleration, and controlling the thrust of the aircraft engine in response to the updated thrust control signal.
    Type: Application
    Filed: July 23, 2020
    Publication date: January 27, 2022
    Applicant: Gulfstream Aerospace Corporation
    Inventors: Thomas C. Horne, Thomas Landers, Thomas P. Lavrisa, Suzanne Swaine
  • Publication number: 20210397183
    Abstract: The processor supplies flight commands to the flight control system by selectively blending pilot input with control signals from the autopilot. The processor generates a projected recovery trajectory through successive iterations, each beginning at the current aircraft location and using a recovery constraint selectable by the processor to influences a degree of flight aggressiveness. A detection system that identifies and invokes a state of threat existence if a threat exists along the projected recovery trajectory. The processor during threat existence in a first iteration commands an initial soft recovery, with permitted blended pilot input. If the threat exists on subsequent iteration, the processor commands a more aggressive recovery while attenuating blended pilot input.
    Type: Application
    Filed: August 27, 2019
    Publication date: December 23, 2021
    Applicant: Gulfstream Aerospace Corporation
    Inventors: Kevin Prosser, Thomas Landers, Alborz Sakhaei, Abhishek Vaidya, Blake Finlayson
  • Publication number: 20210347490
    Abstract: Flight control systems, flight control methods, and aircraft are provided.
    Type: Application
    Filed: May 7, 2020
    Publication date: November 11, 2021
    Applicant: Gulfstream Aerospace Corporation
    Inventors: Thomas Landers, Tom Lavrisa
  • Patent number: 11144071
    Abstract: Avionics systems, aircraft, and methods are provided. An avionics system for a subject aircraft includes an intruder aircraft detection device and a processor. The processor is programmed to: identify an intruder aircraft using the intruder aircraft detection device; predict a future path of the intruder aircraft; estimate strength, size, and location characteristics of a wake vortex created by the intruder aircraft at future points in time along the future path; calculate a potential trajectory with potential positions of the subject aircraft at each of the future points in time; compare the potential positions with the strength, size, and location characteristics of the wake vortex at each of the future points in time to identify a wake conflict; and maneuver the subject aircraft based on the wake conflict.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: October 12, 2021
    Assignee: Gulfstream Aerospace Corporation
    Inventors: Thomas Landers, Kevin Prosser
  • Publication number: 20210206475
    Abstract: An aircraft includes a processor, an airframe, a pitch attitude flight control surface coupled with the airframe, a nose wheel coupled with the airframe, main wheels coupled with the airframe, and a brake system coupled with the main wheels. The processor is programmed to determine that the aircraft has entered a braking segment of a landing phase of a flight of the aircraft while the aircraft is on a ground surface and to command the pitch attitude flight control surface with a nose up command during the braking segment in response to determining that the aircraft has entered the braking segment. The nose up command causes the pitch attitude flight control surface to generate a downforce that increases traction between the main wheels and the ground surface due to a weight shift from the nose wheel to the main wheels and directly due to the downforce on the main wheels.
    Type: Application
    Filed: January 7, 2020
    Publication date: July 8, 2021
    Applicant: Gulfstream Aerospace Corporation
    Inventors: Scott Buethe, Thomas Landers, Alex Rummel
  • Publication number: 20210016871
    Abstract: Aircraft, auto speed brake control systems, and methods for controlling drag of an aircraft are provided. In one example, an aircraft includes an aircraft structure. A drag device is operatively coupled to the aircraft structure between a stowed and a deployed position and/or an intermediate deployed position. A speed brake controller is in communication with the drag device to control movement. An autothrottle-autospeedbrake controller is in communication with the speed brake controller and is configured to receive data signals. The autothrottle-autospeedbrake controller is operative to direct the speed brake controller to control movement of the drag device between the stowed position and the deployed position and/or the intermediate deployed position in response to at least one of the data signals.
    Type: Application
    Filed: July 16, 2019
    Publication date: January 21, 2021
    Inventors: Thomas Landers, Michael Malluck
  • Publication number: 20200066171
    Abstract: The aircraft threat envelope protection system employs a threat envelope data structure in a computer-readable medium that stores at least one trigger condition for each of a plurality of different types of threats associated with the aircraft, and modeled using a common schema. A processor computes plural different projected trajectories representing different possible aircraft paths through spacetime. The processor associates at least some of the plurality of the threats to specific trigger points in spacetime along each of the projected trajectories. The processor will deprecate ones of the projected trajectories when they are deemed not viable to recover from a threat. The processor initiates an aircraft protective response when all projected trajectories but one have been deprecated and the aircraft is within a predetermined proximity to the closest trigger point in spacetime along the non-deprecated trajectory.
    Type: Application
    Filed: August 27, 2019
    Publication date: February 27, 2020
    Applicant: Gulfstream Aerospace Corporation
    Inventors: Kevin Prosser, Thomas Landers, Abhishek Vaidya, Alborz Sakhaei, Blake Finlayson