Patents by Inventor Thomas Marzano

Thomas Marzano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200276440
    Abstract: A filtered feedthrough assembly includes a ferrule configured to be installed in an AIMD housing. An insulator is disposed within a ferrule opening. A conductive pathway is disposed within a passageway through the insulator. A filter capacitor is disposed on a device side having active and ground electrode plates disposed within a capacitor dielectric k greater than 0 and less than 1,000. A capacitor active metallization is electrically connected to the active electrode plates. A ground capacitor metallization is electrically connected to the ground electrode plates. The filter capacitor is the first filter capacitor electrically connected to the conductive pathway coming from a body fluid side into the device side. An active electrical connection electrically connects the conductive pathway to the capacitor active metallization. A ground electrical connection electrically connects the ground capacitor metallization to the ferrule. The filter capacitor is a flat-through or an X2Y attenuator filter capacitor.
    Type: Application
    Filed: May 21, 2020
    Publication date: September 3, 2020
    Inventors: Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Keith A. Seitz
  • Publication number: 20200222691
    Abstract: A hermetically sealed filtered feedthrough assembly attachable to an AIMD includes an insulator hermetically sealing a ferrule opening of an electrically conductive ferrule with a gold braze. A co-fired and electrically conductive sintered paste is disposed within and hermetically seals at least one via hole extending in the insulator. At least one capacitor is disposed on the device side. An active electrical connection electrically connects a capacitor active metallization and the sintered paste. A ground electrical connection electrically connects the gold braze to a capacitor ground metallization, wherein at least a portion of the ground electrical connection physically contacts the gold braze. The dielectric of the capacitor may be less than 1000 k. The ferrule may include an integrally formed peninsula portion extending into the ferrule opening spatially aligned with a ground passageway and metallization of an internally grounded feedthrough capacitor.
    Type: Application
    Filed: March 23, 2020
    Publication date: July 16, 2020
    Inventors: Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Keith W. Seitz, Marc Gregory Martino
  • Publication number: 20200203881
    Abstract: A hermetic feedthrough terminal pin connector for an active implantable medical device (AIMD) includes an electrical insulator hermetically sealed to an opening of an electrically conductive ferrule. A feedthrough terminal pin is hermetically sealed to and disposed through the insulator, the feedthrough terminal pin extending outwardly beyond the insulator on the inside of the casing of the AIMD. A circuit board is disposed on the inside of the casing of the AIMD. A terminal pin connector includes: an electrically conductive connector housing disposed on the circuit board, wherein the connector housing is electrically connected to at least one electrical circuit disposed on the circuit board; and at least one electrically conductive prong supported by the connector housing, the at least one prong contacting and compressed against the feedthrough terminal pin, the at least one prong making a removable electrical connection.
    Type: Application
    Filed: March 5, 2020
    Publication date: June 25, 2020
    Inventors: Thomas Marzano, Keith W. Seitz, Christine A. Frysz, Marc Gregory Martino, Robert A. Stevenson
  • Publication number: 20200185662
    Abstract: A miniature electrochemical cell having a total volume that is less than 0.5 cc is described. The cell casing is formed by joining two ceramic casing halves together. One or both casing halves are machined from ceramic to provide a recess that is sized and shaped to contain the electrode assembly. The opposite polarity terminals are metal feedthroughs, such as of gold, and are formed by brazing gold into openings machined into one or both of ceramic casing halves. A thin film metallization, such as of titanium, contacts an edge periphery of each ceramic casing half. The first ceramic casing half is moved into registry with the second ceramic casing half so that the first and second ring-shaped metallizations contact each other.
    Type: Application
    Filed: February 12, 2020
    Publication date: June 11, 2020
    Inventors: Robert S. Rubino, Keith W. Seitz, Xiaohong Tang, Todd C. Sutay, Brian P. Hohl, Holly Noelle Moschiano, Biswa P. Das, Afsar Ali, Sourabh Biswas, Gary Freitag, David Dianetti, Ho-Chul Yun, Thomas Marzano
  • Publication number: 20200121935
    Abstract: A method for making a dielectric substrate configured for incorporation into a hermetically sealed feedthrough is described. The method includes forming a via hole through a green-state dielectric substrate. A platinum-containing paste is filled into at least 90% of the volume of the via hole. The green-state dielectric substrate is then subjected to a heating protocol including: a binder bake-out heating portion performed at a temperature ranging from about 400° C. to about 700° C. for a minimum of 4 hours; a sintering heating portion performed at a temperature ranging from about 1,400° C. to about 1,900° C. for up to 6 hours; and a cool down portion at a rate of up to 5°/minute from a maximum sintering temperature down to about 1,000° C., then naturally to room temperature. The thusly manufacture dielectric substrate is then positioned in an opening in a ferrule that is configured to be attached to a metal housing of an active implantable medical device.
    Type: Application
    Filed: December 10, 2019
    Publication date: April 23, 2020
    Inventors: Robert A. Stevenson, Xiaohong Tang, William C. Thiebolt, Christine A. Frysz, Keith W. Seitz, Richard L. Brendel, Thomas Marzano, Jason Woods, Dominick J. Frustaci, Steven W. Winn
  • Patent number: 10625511
    Abstract: A reservoir cover for a continuous inkjet printer with a surface called the upper surface (4331), a surface called the lower surface (4332), between which there is an upper part (433a) and a lower part (433b) of the cover, at least said lower part of the cover being delimited laterally by a peripheral surface (Se), and: at least one through conduit (31) that passes through at least part of the cover to bring at least one liquid from said upper part to said lower part, at least one 1st liquid connection means (42, 42?), capable of being positioned removably relative to the upper surface (331) to bring at least one liquid to an inlet of said through conduit (31), that passes through the cover.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: April 21, 2020
    Assignee: DOVER EUROPE SÀRL
    Inventor: Thomas Marzano
  • Patent number: 10596369
    Abstract: A hermetically sealed filtered feedthrough assembly includes an electrically conductive ferrule sealed by a first gold braze to an insulator disposed at least partially within a ferrule opening. A conductive wire is disposed within a via hole disposed through the insulator extending from a body fluid side to a device side. A second gold braze hermetically seals the conductive leadwire to the via hole. A capacitor is disposed on the device side having a capacitor dielectric body with a dielectric constant k that is greater than 0 and less than 1000. The capacitor is the first filter capacitor electrically connected to the conductive leadwire coming from the body fluid side into the device side. An active electrical connection electrically connects the conductive leadwire to the capacitor active metallization. A ground electrical connection electrically connects the capacitor ground metallization to the ferrule and housing of the active implantable medical device.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: March 24, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Keith W. Seitz, Marc Gregory Martino
  • Patent number: 10589107
    Abstract: A feedthrough separates a body fluid side from a device side. A passageway is disposed through the feedthrough. A body fluid side leadwire extends from a first end disposed inside the passageway to a second end on the body fluid side. A device side leadwire extends from a first end disposed inside the passageway to a second end on the device side. The body fluid side leadwire is hermetically sealed to the feedthrough body and is not of the same material as the device side leadwire. A circuit board has an active via hole with a second end of the second leadwire residing therein. The circuit board has an active circuit trace that is electrically connectable to electronic circuits housed in an AIMD, and a circuit board ground metallization.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: March 17, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Jason Woods, Richard L. Brendel, Marc Gregory Martino
  • Patent number: 10587073
    Abstract: A feedthrough filter capacitor assembly comprising a terminal pin connector is described. The terminal pin connector is designed to facilitate an electrical connection between the terminal pin comprising a multitude of compositions to a circuit board of an implantable medical device. The terminal pin connector comprises a clip portion positioned within a connector housing. The connector clip mechanically attaches to the terminal pin of the feedthrough with at least one prong and an exterior surface of the connector housing electrically contacts the circuit board, creating an electrical connection therebetween. The connector housing comprises a material that is conducive to a weld or solder attachment process to the circuit board.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: March 10, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Thomas Marzano, Keith W. Seitz, Michael F. Scalise
  • Publication number: 20200054881
    Abstract: A hermetically sealed filtered feedthrough for an active implantable medical device includes a first conductive leadwire extending from a first end to a second end, the first leadwire second end extending outwardly beyond the device side of an insulator hermetically sealed to a ferrule for the feedthrough. A circuit board supporting a chip capacitor is disposed adjacent to a device side of the insulator and has a circuit board passageway. The first leadwire first end resides in the circuit board passageway. A second conductive leadwire on the device side has a second leadwire first end disposed in the circuit board passageway with a second leadwire second end extending outwardly beyond the circuit board to be connectable to AIMD internal electronics. The second leadwire first end is connected to the first leadwire first end and a capacitor internal metallization in the circuit board passageway.
    Type: Application
    Filed: October 18, 2019
    Publication date: February 20, 2020
    Inventors: Dominick J. Frustaci, Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel, Jason Woods
  • Patent number: 10561837
    Abstract: A filtered feedthrough assembly for an active implantable medical device (AIMD) includes an insulator hermetically sealed to an opening of an electrically conductive ferrule. A ceramic reinforced metal composite of platinum and alumina (CRMC) material is disposed in an insulator via hole surrounding a substantially pure platinum fill. A capacitor disposed on the insulator device side has a capacitor dielectric with a dielectric constant k that is greater than 0 and less than 1000. Coming from the body fluid side to the device side of the AIMD, the capacitor is the first filter capacitor electrically connected to the substantially pure platinum fill. An active electrical connection electrically connects the substantially pure platinum fill to the capacitor active metallization. A ground electrical connection electrically connects the capacitor ground metallization to the ferrule and subsequently to the housing of the AIMD.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: February 18, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Keith W. Seitz, Marc Gregory Martino
  • Patent number: 10559409
    Abstract: A method for manufacturing a feedthrough dielectric body for an active implantable medical device includes the steps of first forming a ceramic reinforced metal composite (CRMC) paste by mixing platinum with a ceramic material to form a CRMC material, subjecting the CRMC material to a first sintering step to thereby form a sintered CRMC material, ball-milling or grinding the sintered CRMC material to form a powdered CRMC material; and then mixing the powdered CRMC material with a solvent to form the CRMC paste.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: February 11, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Keith W. Seitz, Dallas J. Rensel, Brian P. Hohl, Jonathan Calamel, Xiaohong Tang, Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Jason Woods, Richard L. Brendel
  • Publication number: 20200030614
    Abstract: A hermetically sealed filtered feedthrough assembly attachable to an AIMD includes an insulator hermetically sealing the opening of a ferrule with a gold braze. The ferrule includes a peninsula extending into the ferrule opening and the insulator has a cutout matching the peninsula. A sintered platinum-containing paste hermetically seals at least one via hole extending through the insulator. At least one capacitor is disposed on the device side. An active electrical connection electrically connects the capacitor active metallization to the sintered paste. A ground electrical connection electrically connects the capacitor ground metallization disposed within a capacitor ground passageway to the portion of the gold braze along the ferrule peninsula. The dielectric of the capacitor may be less than 1,000 k.
    Type: Application
    Filed: October 1, 2019
    Publication date: January 30, 2020
    Inventors: Robert A. Stevenson, Christine A. Frysz, Keith W. Seitz, Thomas Marzano, Marc Gregory Martino
  • Publication number: 20200030613
    Abstract: A method for manufacturing a singulated feedthrough insulator for a hermetic seal of an active implantable medical device (AIMD) is described. The method begins with forming a green-state ceramic bar with a via hole filled with a conductive paste. The green-state ceramic bar is dried to convert the paste to an electrically conductive material filling via hole and then subjected to a pressing step. Following pressing, a green-state insulator is singulated from the green-state ceramic bar. The singulated green-state insulator in next sintered to form an insulator that is sized and shaped for hermetically sealing to close a ferrule opening. The thusly produced feedthrough is suitable installation in an opening in the housing of an active implantable medical device.
    Type: Application
    Filed: September 23, 2019
    Publication date: January 30, 2020
    Inventors: Robert A. Stevenson, Thomas Marzano, Keith W. Seitz, Christine A. Frysz, Dallas J. Rensel, Brian P. Hohl
  • Patent number: 10525718
    Abstract: A reservoir for an inkjet printer, comprising: a 1st compartment (10), comprising at least one 1st part (101) called the upper part, and a 2nd part (102) called the lower part delimited by a convergent shaped wall (14), and a 2nd compartment (20) delimited by a lateral wall, the 2nd part of the 1st compartment (10) being placed in the 2nd compartment (20), the wall (22) of which surrounds it radially, when these 2 compartments are assembled to each other, 1st drawing off means (26) to connect the inside with the outside of the 1st compartment (10), and 2nd drawing off means (28) to connect the inside with the outside of the 2nd compartment (20); a cover (40) to close the 1st compartment (10).
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: January 7, 2020
    Assignee: DOVER EUROPE SÀRL
    Inventor: Thomas Marzano
  • Patent number: 10500402
    Abstract: A hermetically sealed feedthrough for attachment to an active implantable medical device includes a dielectric substrate configured to be hermetically sealed to a ferrule or an AIMD housing. A via hole is disposed through the dielectric substrate from a body fluid side to a device side. A conductive fill is disposed within the via hole forming a filled via electrically conductive between the body fluid side and the device side. A conductive insert is at least partially disposed within the conductive fill. Then, the conductive fill and the conductive insert are co-fired with the dielectric substrate to form a hermetically sealed and electrically conductive pathway through the dielectric substrate between the body fluid side and the device side.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: December 10, 2019
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Xiaohong Tang, William C. Thiebolt, Christine A. Frysz, Keith W. Seitz, Richard L. Brendel, Thomas Marzano, Jason Woods, Dominick J. Frustaci, Steven W. Winn
  • Patent number: 10449375
    Abstract: A hermetically sealed feedthrough subassembly attachable to an active implantable medical device includes a first conductive leadwire extending from a first end to a second end, the first conductive leadwire first end disposed past a device side of an insulator body. A feedthrough filter capacitor is disposed on the device side. A second conductive leadwire is disposed on the device side having a second conductive leadwire first end at least partially disposed within a first passageway of the feedthrough filter capacitor and having a second conductive leadwire second end disposed past the feedthrough filter capacitor configured to be connectable to AIMD internal electronics. The second conductive leadwire first end is at, near or adjacent to the first conductive leadwire first end. A first electrically conductive material forms a three-way electrical connection electrically connecting the second conductive leadwire first end, the first conductive leadwire first end and a capacitor internal metallization.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: October 22, 2019
    Assignee: Greatbatch Ltd.
    Inventors: Dominick J. Frustaci, Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel, Jason Woods
  • Patent number: 10420949
    Abstract: A method of manufacturing a feedthrough dielectric body for an active implantable medical device includes the steps of forming a ceramic body in a green state, or, stacking discrete layers of ceramic in a green state upon one another and laminating together. The ceramic body has a first side opposite a second side. At least one via hole is formed straight through the ceramic body extending between the first and second sides. At least one via hole is filled with a conductive paste. The ceramic body and the conductive paste are then dried. The ceramic body and the conductive paste are isostatically pressed at above 1000 psi to remove voids and to form a closer interface for sintering. The ceramic body and the conductive paste are sintered together to form the feedthrough dielectric body. The feedthrough dielectric body is hermetically sealed to a ferrule.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: September 24, 2019
    Assignee: Greatbatch Ltd.
    Inventors: Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Dallas J. Rensel, Brian P. Hohl
  • Publication number: 20190255319
    Abstract: A filtered feedthrough assembly for an active implantable medical device (AIMD) includes an insulator hermetically sealed to an opening of an electrically conductive ferrule. A ceramic reinforced metal composite of platinum and alumina (CRMC) material is disposed in an insulator via hole surrounding a substantially pure platinum fill. A capacitor disposed on the insulator device side has a capacitor dielectric with a dielectric constant k that is greater than 0 and less than 1000. Coming from the body fluid side to the device side of the AIMD, the capacitor is the first filter capacitor electrically connected to the substantially pure platinum fill. An active electrical connection electrically connects the substantially pure platinum fill to the capacitor active metallization.
    Type: Application
    Filed: April 23, 2019
    Publication date: August 22, 2019
    Inventors: Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Keith W. Seitz, Marc Gregory Martino
  • Patent number: RE47624
    Abstract: A co-fired hermetically sealed feedthrough is attachable to an active implantable medical device. The feedthrough comprises an alumina dielectric substrate comprising at least 96 or 99% alumina. A via hole is disposed through the alumina dielectric substrate from a body fluid side to a device side. A substantially closed pore, fritless and substantially pure platinum fill is disposed within the via hole forming a platinum filled via electrically conductive between the body fluid side and the device side. A hermetic seal is between the platinum fill and the alumina dielectric substrate, wherein the hermetic seal comprises a tortuous and mutually conformal interface between the alumina dielectric substrate and the platinum fill.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: October 1, 2019
    Assignee: Greatbatch Ltd.
    Inventors: Xiaohong Tang, William C. Thiebolt, Christine A. Frysz, Keith W. Seitz, Robert A. Stevenson, Richard L. Brendel, Thomas Marzano, Jason Woods, Dominck J. Frustaci, Steven W. Winn