Patents by Inventor Thomas R. Covey

Thomas R. Covey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12247947
    Abstract: An apparatus includes a first electrode and a second electrode. The second electrode is placed in parallel with the first electrode to provide constant gap distance. The gap between the first electrode and the second electrode is at atmospheric pressure. Ions are introduced into the center of the gap and travel through the apparatus in a direction parallel to the first electrode and the second electrode. The apparatus is configured as a high-field symmetric-waveform apparatus for filtering high mobility ions or for fragmenting ions. The apparatus is also configured for three modes of operation: as a conventional DMS; as a filter high mobility ions; and as fragmentation device. A symmetric electric field is produced in the gap with a maximum density normalized field strength greater than 10 Td to filter high mobility ions and with a maximum density normalized field strength greater than 100 Td to fragment ions.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: March 11, 2025
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Bradley B. Schneider, Erkinjon Nazarov, Thomas R. Covey
  • Patent number: 12209989
    Abstract: MS-based methods and systems are provided herein in which a desorption solvent desorbs one or more analyte species from an SPME device within a sampling interface that is fluidly coupled to an ion source for subsequent mass spectrometric analysis. In accordance with various aspects of the applicants teachings, the sampling interface includes an internal sampling conduit that provides increased interaction between the desorption solvent and the sampling substrate, thereby improving mass transfer (e.g., increased extraction or desorption speed).
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: January 28, 2025
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Thomas R. Covey, Chang Liu
  • Publication number: 20250018412
    Abstract: Improvements in acoustically dispensed samples that are injected into an open port probe (OPP) are described. Apparatus and method are described that calibrate the volume dispensing determination and mechanisms in the acoustic dispenser to produce accurate and precise volumetric delivery.
    Type: Application
    Filed: July 16, 2024
    Publication date: January 16, 2025
    Inventors: Thomas R. Covey, Chang Liu
  • Patent number: 12138606
    Abstract: A fluid processing system that can include a sample container having a sample chamber for containing a fluid and a plurality of magnetic particles and at least one movable magnetic assembly configured to be movably inserted into or out of the sample chamber. The movable magnetic assembly can include a plurality of electromagnets that generate a magnetic field within at least a portion of the sample chamber when the assembly is inserted at least partially into the sample chamber. The fluid processing system can also include a signal generator that applies electrical signals, e.g., AC electrical signals, to the electromagnets of the magnetic assembly and a controller coupled to the signal generator that is configured to control phases of the electrical signals applied to the electromagnets to generate magnetic field gradients within the portion of the sample chamber effective to magnetically influence the plurality of the magnetic particles.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: November 12, 2024
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Don W Arnold, Thomas R. Covey, Chang Liu
  • Patent number: 12135969
    Abstract: Electromagnetic systems and corresponding methods for assembling the electromagnetic systems are described. The electromagnetic systems can be used in fluid processing systems that include a plurality of fluid containers, each configured to define a fluid chamber that receives a fluid and a plurality of magnetic particles, and a plurality of electromagnets configured to generate a magnetic field within at least one of the plurality of the fluid containers. The fluid processing system can also include a PCB board that supplies the electromagnets with electrical current by establishing an electrical connection between electrical contact terminals included on the PCB board and spring loaded connections included on each electromagnet.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: November 5, 2024
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Don W. Arnold, Thomas R. Covey, Chang Liu, Stanislaw Potyrala, Alex Tsipirovich
  • Publication number: 20240347333
    Abstract: Methods and systems for delivering a liquid sample to an ion source for the generation of ions and subsequent analysis by mass spectrometry are provided herein. In accordance with various aspects of the present teachings, MS-based systems and methods are provided in which the flow of desorption solvent within a sampling probe fluidly coupled to an ion source can be selectively controlled such that one or more analyte species can be desorbed from a sample substrate inserted within the sampling probe within a decreased volume of desorption solvent for subsequently delivery to the ion source. In various aspects, sensitivity can be increased due to higher desorption efficiency (e.g., due to increased desorption time) and/or decreased dilution of the desorbed analytes.
    Type: Application
    Filed: November 13, 2023
    Publication date: October 17, 2024
    Inventors: Don W. Arnold, Thomas R. Covey, Chang Liu
  • Publication number: 20240272191
    Abstract: A method of processing a sample plate containing a plurality of samples includes aspirating simultaneously, from the sample plate, a first sample droplet from a first sample of the plurality of samples with a first pipette and a second sample droplet from a second sample of the plurality of samples with a second pipette. The sample plate also includes dispensing sequentially, from the first pipette and the second pipette, the first sample drop and the second sample drop into an open port interface (OPI).
    Type: Application
    Filed: February 13, 2024
    Publication date: August 15, 2024
    Applicants: DH Technologies Development Pte. Ltd., United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Meghav Verma, Samuel Michael, John Janiszewski, Chang Liu, Thomas R. Covey
  • Patent number: 12036568
    Abstract: Improvements in acoustically dispensed samples that are injected into an open port probe (OPP) are described. Apparatus and method are described that calibrate the volume dispensing determination and mechanisms in the acoustic dispenser to produce accurate and precise volumetric delivery.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: July 16, 2024
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Thomas R Covey, Chang Liu
  • Publication number: 20240168046
    Abstract: GT Systems and methods are disclosed for controlling humidity and/or temperature during chemical analysis of a sample material. Specifically, the present application relates to microfluidics systems and methods, e.g. involving ADE, open port interface (OPI) and/or mass spectrometry (MS), for controlling humidity and/or temperature during chemical analysis of a sample material. The present systems and methods allow a user to modify the temperature of a microplate during dispensing. This allows the user to study reactions that occur at temperatures different than room temperature, e.g. at body temperature. Additionally, modifying and/or controlling the temperature of a microplate during dispensing can allow a user to maintain quality of a sample through maintaining a proper temperature, e.g. a cool temperature to prevent degradation of a sample. As part of the present invention, Applicant determined how to avoid phase changes, e.g.
    Type: Application
    Filed: March 21, 2022
    Publication date: May 23, 2024
    Inventors: Thomas R. Covey, Chang Liu
  • Patent number: 11990325
    Abstract: A method for the repeated analysis of a sample bearing location. The sample bearing location may include, for instance, a sampled point in a tissue slice that is spatially and temporally correlated to the original slice. The slice may be in whole, or in part, a complete item or a portion of a complete item such as, for example, a human organ. The method improves the analysis process, such as mass spectrometry analysis, by providing a much more complete characterization of the target. The method also allows for the splitting of the sample and chemical/physical alteration of the aliquots for enhanced chemical analysis.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: May 21, 2024
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Thomas R. Covey, Chang Liu, Gary J. Van Berkel
  • Patent number: 11828691
    Abstract: Methods and apparatus for processing fluids are described. In various aspects, a fluid processing system may include a magnetic assembly that includes a plurality of magnetic structures configured to generate a magnetic field gradient within a fluid container. The magnetic structures may be formed as a plurality of electromagnets configured to be individually actuated by a controller. Each of the electromagnets may generate a magnetic field within the fluid container. The electromagnets may be differentially actuated to create a magnetic field gradient within the fluid container to agitate, mix, or otherwise influence magnetic particles disposed within the fluid container. Activation of the electromagnets of an electromagnetic structure may generate a magnetic field gradient that influences magnetic particles in an x-y direction.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: November 28, 2023
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Don W. Arnold, Thomas R. Covey, Chang Liu
  • Patent number: 11817302
    Abstract: Methods and systems for delivering a liquid sample to an ion source for the generation of ions and subsequent analysis by mass spectrometry are provided herein. In accordance with various aspects of the present teachings, MS-based systems and methods are provided in which the flow of desorption solvent within a sampling probe fluidly coupled to an ion source can be selectively controlled such that one or more analyte species can be desorbed from a sample substrate inserted within the sampling probe within a decreased volume of desorption solvent for subsequently delivery to the ion source. In various aspects, sensitivity can be increased due to higher desorption efficiency (e.g., due to increased desorption time) and/or decreased dilution of the desorbed analytes.
    Type: Grant
    Filed: October 17, 2022
    Date of Patent: November 14, 2023
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Don W. Arnold, Thomas R. Covey, Chang Liu
  • Publication number: 20230349858
    Abstract: MS-based methods and systems are provided herein in which a desorption solvent desorbs one or more analyte species from an SPME device within a sampling interface that is fluidly coupled to an ion source for subsequent mass spectrometric analysis. In accordance with various aspects of the applicants teachings, the sampling interface includes an internal sampling conduit that provides increased interaction between the desorption solvent and the sampling substrate, thereby improving mass transfer (e.g., increased extraction or desorption speed).
    Type: Application
    Filed: September 29, 2020
    Publication date: November 2, 2023
    Inventors: Thomas R. Covey, Chang Liu
  • Publication number: 20230245877
    Abstract: In one aspect, an ion source for use in a mass spectrometry system is disclosed, which comprises a housing, a first and a second ion probe coupled to said housing, and a first and a second emitter configured for coupling, respectively, to said first and second ion probes. The first ion probe is configured for receiving a sample at a flow rate in nanoflow regime and the second ion probe is configured for receiving a sample at a flow rate above the nanoflow regime. Each of the ion probes includes a discharge end (herein also referred to as the discharge tip) for ionizing at least one constituent of the received sample. In some embodiment, each ion probe receives the sample from a liquid chromatography (LC) column. Further, the ion probes can be interchangeably disposed within the housing.
    Type: Application
    Filed: April 11, 2023
    Publication date: August 3, 2023
    Inventors: John J. Corr, Thomas R. Covey, Peter Kovarik, Bradley B. Schneider
  • Publication number: 20230207299
    Abstract: A trace of intensity versus time values is received for a series of samples produced by a mass spectrometer. Also, a series of ejections times corresponding to the series of samples produced by a sample introduction system is received. A series of expected peak times corresponding to the series of ejection times are calculated using a known delay time from ejection to mass analysis. At least one isolated peak of the trace is identified using the series of expected peak times. A peak profile is calculated by fitting a mixture of at least two different distribution functions to the at least one isolated peak. For at least one time of the series of expected peak times, an area of a peak at the one time is calculated by fitting the peak profile to the trace at the one time and calculating an area of the fitted peak profile.
    Type: Application
    Filed: May 21, 2021
    Publication date: June 29, 2023
    Inventors: Thomas R Covey, Gordana Ivosev, Peter Kovarik, Chang Liu
  • Publication number: 20230207298
    Abstract: An optimal value is calculated for at least one parameter of an ADE device, an OPI, or an ion source device. For each value of a plurality of parameter values for at least one parameter of the ADE device, the OPI, or the ion source device, three steps are performed using a processor. First, the at least one parameter is set to the value. Second, the ADE device, the OPI, the ion source device, and a mass spectrometer are instructed to produce one or more intensity versus time mass peaks for a sample. Third, a feature value is calculated for at least one feature of the one or more intensity versus time mass peaks. A plurality of feature values corresponding to the plurality of parameter values is produced. An optimal value is calculated for the at least one parameter from the plurality of feature values.
    Type: Application
    Filed: May 21, 2021
    Publication date: June 29, 2023
    Inventors: Chang Liu, Thomas R. Covey
  • Publication number: 20230176010
    Abstract: A system and method are provided for controlling the temperature gradient along a differential mobility spectrometer having a differential mobility spectrometer having an inlet and an outlet, wherein the inlet is configured to receive ions transported from an ion source by a transport gas. The differential mobility spectrometer has an internal operating pressure, electrodes, and at least one voltage source for providing DC and RF voltages to the electrodes for separating ions that are transported from the inlet to the outlet. A gas port is provided near the outlet for introducing a throttle gas to control the flow rate of the transport gas through the differential mobility spectrometer and thereby adjust the ion residence time. A heater is provided for controlling the temperature of the throttle gas to minimize the temperature gradient between the inlet and outlet of the differential mobility spectrometer. A method of calibrating a DMS is also disclosed.
    Type: Application
    Filed: April 13, 2021
    Publication date: June 8, 2023
    Inventors: Thomas R. Covey, Yang Kang, Bradley B. Schneider
  • Patent number: 11664210
    Abstract: In one aspect, an ion source for use in a mass spectrometry system is disclosed, which comprises a housing, a first and a second ion probe coupled to said housing, and a first and a second emitter configured for coupling, respectively, to said first and second ion probes. The first ion probe is configured for receiving a sample at a flow rate in nanoflow regime and the second ion probe is configured for receiving a sample at a flow rate above the nanoflow regime. Each of the ion probes includes a discharge end (herein also referred to as the discharge tip) for ionizing at least one constituent of the received sample. In some embodiment, each ion probe receives the sample from a liquid chromatography (LC) column. Further, the ion probes can be interchangeably disposed within the housing.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: May 30, 2023
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: John J. Corr, Thomas R. Covey, Peter Kovarik, Bradley B. Schneider
  • Publication number: 20230062622
    Abstract: Methods and systems for delivering a liquid sample to an ion source for the generation of ions and subsequent analysis by mass spectrometry are provided herein. In accordance with various aspects of the present teachings, MS-based systems and methods are provided in which the flow of desorption solvent within a sampling probe fluidly coupled to an ion source can be selectively controlled such that one or more analyte species can be desorbed from a sample substrate inserted within the sampling probe within a decreased volume of desorption solvent for subsequently delivery to the ion source. In various aspects, sensitivity can be increased due to higher desorption efficiency (e.g., due to increased desorption time) and/or decreased dilution of the desorbed analytes.
    Type: Application
    Filed: October 17, 2022
    Publication date: March 2, 2023
    Inventors: Don W. Arnold, Thomas R. Covey, Chang Liu
  • Patent number: 11476106
    Abstract: Methods and systems for delivering a liquid sample to an ion source for the generation of ions and subsequent analysis by mass spectrometry are provided herein. In accordance with various aspects of the present teachings, MS-based systems and methods are provided in which the flow of desorption solvent within a sampling probe fluidly coupled to an ion source can be selectively controlled such that one or more analyte species can be desorbed from a sample substrate inserted within the sampling probe within a decreased volume of desorption solvent for subsequently delivery to the ion source. In various aspects, sensitivity can be increased due to higher desorption efficiency (e.g., due to increased desorption time) and/or decreased dilution of the desorbed analytes.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: October 18, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Don W. Arnold, Thomas R. Covey, Chang Liu