Patents by Inventor Thomas S. Wong

Thomas S. Wong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240114942
    Abstract: The present disclosure generally provides compounds that antagonize certain T2R taste receptors, including related uses, methods, and compositions for the reduction of bitter taste and/or the enhancement of sweet taste. In certain aspects, the disclosure provides flavored articles or flavored compositions comprising such compounds, as well as uses of such compounds to reduce the bitter taste and/or enhance the sweet taste of such flavored articles or flavored compositions.
    Type: Application
    Filed: November 10, 2023
    Publication date: April 11, 2024
    Applicant: Firmenich Incorporated
    Inventors: Joseph R. Fotsing, Andrew Patron, Guy Servant, Lan Zhang, Mark Williams, Qing Chen, Kenneth Simone, Vincent Darmohusodo, Chad Priest, Melissa S. Wong, Thomas Brady
  • Publication number: 20200101422
    Abstract: A filtration system has a filter element with a filtration membrane, a feed inlet and a concentrate outlet on a first side of the membrane and a permeate outlet on a second side of the membrane. A feed line with a feed shutoff valve is in fluid communication with the feed inlet, and a concentrate return line with a concentrate shutoff valve is in fluid communication with the concentrate outlet. A feed pump is in fluid communication with the feed inlet via the feed line and the feed shutoff valve, and a backwash pump is in fluid communication with the permeate outlet. In a priming phase of a backwash operation, the feed shutoff valve and the concentrate shutoff valve are closed and the backwash supply is operable to deliver fluid to the filtration element and equalize pressure between the first side and the second side of the filtration membrane.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 2, 2020
    Inventors: Andrew Flowers, Thomas S. Wong, Mark A. Shelton
  • Publication number: 20140340142
    Abstract: An integrated circuit supplied by a rail-to-rail power supply voltage includes a multi-level stack voltage generator configured to partition the rail-to-rail power supply voltage into one or more reduced supply voltages each having a voltage value between positive and negative power supply voltages of the rail-to-rail power supply. The reduced supply voltages and the positive and negative power supply voltages being configured in series to form a stack of circuit layers. The integrated circuit further includes a core circuit including core circuit units coupled in a circuit layer or coupled between two or more circuit layers. Each core circuit unit is coupled to at least one of the reduced supply voltages. The core circuit units are coupled in the stack of circuit layers to form a serial connection of core circuit units between the positive power supply voltage and the negative power supply voltage.
    Type: Application
    Filed: May 16, 2013
    Publication date: November 20, 2014
    Inventors: Thomas S. Wong, Gang Luo
  • Patent number: 8878387
    Abstract: An integrated circuit supplied by a rail-to-rail power supply voltage includes a multi-level stack voltage generator configured to partition the rail-to-rail power supply voltage into one or more reduced supply voltages each having a voltage value between positive and negative power supply voltages of the rail-to-rail power supply. The reduced supply voltages and the positive and negative power supply voltages being configured in series to form a stack of circuit layers. The integrated circuit further includes a core circuit including core circuit units coupled in a circuit layer or coupled between two or more circuit layers. Each core circuit unit is coupled to at least one of the reduced supply voltages. The core circuit units are coupled in the stack of circuit layers to form a serial connection of core circuit units between the positive power supply voltage and the negative power supply voltage.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: November 4, 2014
    Assignee: Micrel, Inc.
    Inventors: Thomas S. Wong, Gang Luo
  • Patent number: 8861584
    Abstract: A noise discriminator circuit and a noise discrimination method in a burst mode receiver is configured to determine the validity of an incoming burst signal by analyzing the timing of the signal edges of incoming signal to look for a time duration conforming to the preamble data bits of a valid burst signal. In one embodiment, the noise discriminator circuit and method analyze the time duration between signal edges of the same pulse of an incoming signal. In another embodiment, the noise discriminator circuit and method analyze the time duration between a first set of pulses of an incoming signal and the time duration between signal edges of a second set of pulses of the incoming signal. When the time durations are within a given time range relating to a predetermined timing separation of a valid burst signal, the incoming signal is validated as a valid burst signal.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: October 14, 2014
    Assignee: Micrel, Inc.
    Inventors: George W. Brown, Thomas S. Wong, Bernd Neumann
  • Patent number: 8705608
    Abstract: A noise discriminator circuit and a noise discrimination method in a burst mode receiver is configured to determine the validity of an incoming burst signal by analyzing the timing of the signal edges of incoming signal to look for a time duration conforming to the preamble data bits of a valid burst signal. In one embodiment, the noise discriminator circuit and method analyze the time duration between signal edges of the same pulse of an incoming signal. In another embodiment, the noise discriminator circuit and method analyze the time duration between a first set of pulses of an incoming signal and the time duration between signal edges of a second set of pulses of the incoming signal. When the time durations are within a given time range relating to a predetermined timing separation of a valid burst signal, the incoming signal is validated as a valid burst signal.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: April 22, 2014
    Assignee: Micrel, Inc.
    Inventors: George W. Brown, Thomas S. Wong, Bernd Neumann
  • Publication number: 20130279903
    Abstract: A noise discriminator circuit and a noise discrimination method in a burst mode receiver is configured to determine the validity of an incoming burst signal by analyzing the timing of the signal edges of incoming signal to look for a time duration conforming to the preamble data bits of a valid burst signal. In one embodiment, the noise discriminator circuit and method analyze the time duration between signal edges of the same pulse of an incoming signal. In another embodiment, the noise discriminator circuit and method analyze the time duration between a first set of pulses of an incoming signal and the time duration between signal edges of a second set of pulses of the incoming signal. When the time durations are within a given time range relating to a predetermined timing separation of a valid burst signal, the incoming signal is validated as a valid burst signal.
    Type: Application
    Filed: August 16, 2012
    Publication date: October 24, 2013
    Applicant: MICREL, INC.
    Inventors: George W. Brown, Thomas S. Wong, Bernd Neumann
  • Publication number: 20130279905
    Abstract: A noise discriminator circuit and a noise discrimination method in a burst mode receiver is configured to determine the validity of an incoming burst signal by analyzing the timing of the signal edges of incoming signal to look for a time duration conforming to the preamble data bits of a valid burst signal. In one embodiment, the noise discriminator circuit and method analyze the time duration between signal edges of the same pulse of an incoming signal. In another embodiment, the noise discriminator circuit and method analyze the time duration between a first set of pulses of an incoming signal and the time duration between signal edges of a second set of pulses of the incoming signal. When the time durations are within a given time range relating to a predetermined timing separation of a valid burst signal, the incoming signal is validated as a valid burst signal.
    Type: Application
    Filed: August 16, 2012
    Publication date: October 24, 2013
    Applicant: MICREL, INC.
    Inventors: George W. Brown, Thomas S. Wong, Bernd Neumann
  • Patent number: 8320420
    Abstract: A laser bias control and monitoring circuit receives a monitor diode current on an input node and generate a bias current for a laser diode on an output node where the monitor diode current flows into (positive polarity) or out of (negative polarity) the input node. The laser bias control and monitoring circuit includes a polarity independent current sensing circuit configured to receive the monitor diode current in either positive or negative polarity and to generate a normalized output current having a magnitude proportional to a magnitude of the monitor diode current. In this manner, the laser bias control and monitoring circuit can be used with laser diode and monitor diode combination in either the common anode or the common cathode configuration, or with the monitor diode current being provided from the anode or cathode of the monitor diode. No reprogramming or reconfiguration of the circuit is required.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: November 27, 2012
    Assignee: Micrel, Inc.
    Inventors: George W. Brown, Thomas S. Wong
  • Patent number: 8295336
    Abstract: A transmission line pre-emphasis circuit includes a primary signal path receiving a digital data stream and generating a primary output current indicative of the digital data stream, one or more secondary signal paths each incorporating a network implementing a specific transient response where the one or more secondary signal paths receive the digital data stream and generate secondary output currents representing one or more overshoot signals indicative of the transient response of the respective network. The one or more secondary signal paths have variable gain being programmed through respective DC programming signals. The secondary output currents are summed with the primary output current. The transmission line pre-emphasis circuit further includes an output loading stage coupled to generate from the summed current a pre-emphasized digital output signal indicative of the one or more overshoot signals added to the digital data stream.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: October 23, 2012
    Assignee: Micrel Inc.
    Inventors: Robert C. Lutz, Thomas S. Wong, Klaus P. Piontek
  • Publication number: 20120224598
    Abstract: A laser bias control and monitoring circuit receives a monitor diode current on an input node and generate a bias current for a laser diode on an output node where the monitor diode current flows into (positive polarity) or out of (negative polarity) the input node. The laser bias control and monitoring circuit includes a polarity independent current sensing circuit configured to receive the monitor diode current in either positive or negative polarity and to generate a normalized output current having a magnitude proportional to a magnitude of the monitor diode current. In this manner, the laser bias control and monitoring circuit can be used with laser diode and monitor diode combination in either the common anode or the common cathode configuration, or with the monitor diode current being provided from the anode or cathode of the monitor diode. No reprogramming or reconfiguration of the circuit is required.
    Type: Application
    Filed: March 2, 2011
    Publication date: September 6, 2012
    Applicant: MICREL, INC.
    Inventors: George W. Brown, Thomas S. Wong
  • Patent number: 8212586
    Abstract: An integrated circuit capable of dual configuration of data flow and operable in a plurality of operational modes is provided. The circuit includes eight corner pins, wherein the eight corner pins comprise a first corner pin and a second corner pin on each side of the circuit in each of four side sets, wherein a first corner pin of one side of the circuit is proximate and adjacent to a second corner pin of an adjacent side counterclockwise from the first corner pin and together constitute a paired corner set, each paired corner set comprising a differential input and a differential output.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: July 3, 2012
    Assignee: Micrel, Inc.
    Inventors: Thomas S Wong, David Naren
  • Patent number: 8138851
    Abstract: A transmission line equalizer includes multiple signal paths connected in parallel between an equalizer input signal and an output amplifier where each signal path has a network implementing a specific frequency dependent response and each signal path implements current gain amplification with one or more of the signal paths having a variable gain programmed through a time invariant, DC programming signal. Furthermore, one or more of the signal paths implements linear-to-nonlinear signal transformations and compensating nonlinear-to-linear signal transformations to generate linearized output signals at the one or more signal paths. The equalizer further includes the output amplifier summing output signals from the multiple signal paths to generate an equalized output signal. In operation, the gain of the one or more signal paths is varied to establish the relative proportions of the output signals generated by each signal path and summed at the output amplifier.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: March 20, 2012
    Assignee: Micrel, Inc.
    Inventors: Robert C. Lutz, Thomas S. Wong, Ulrich Bruedigam
  • Publication number: 20110228823
    Abstract: A transmission line pre-emphasis circuit includes a primary signal path receiving a digital data stream and generating a primary output current indicative of the digital data stream, one or more secondary signal paths each incorporating a network implementing a specific transient response where the one or more secondary signal paths receive the digital data stream and generate secondary output currents representing one or more overshoot signals indicative of the transient response of the respective network. The one or more secondary signal paths have variable gain being programmed through respective DC programming signals. The secondary output currents are summed with the primary output current. The transmission line pre-emphasis circuit further includes an output loading stage coupled to generate from the summed current a pre-emphasized digital output signal indicative of the one or more overshoot signals added to the digital data stream.
    Type: Application
    Filed: March 16, 2010
    Publication date: September 22, 2011
    Applicant: MICREL, INC.
    Inventors: Robert C. Lutz, Thomas S. Wong, Klaus P. Piontek
  • Publication number: 20110227675
    Abstract: A transmission line equalizer includes multiple signal paths connected in parallel between an equalizer input signal and an output amplifier where each signal path has a network implementing a specific frequency dependent response and each signal path implements current gain amplification with one or more of the signal paths having a variable gain programmed through a time invariant, DC programming signal. Furthermore, one or more of the signal paths implements linear-to-nonlinear signal transformations and compensating nonlinear-to-linear signal transformations to generate linearized output signals at the one or more signal paths. The equalizer further includes the output amplifier summing output signals from the multiple signal paths to generate an equalized output signal. In operation, the gain of the one or more signal paths is varied to establish the relative proportions of the output signals generated by each signal path and summed at the output amplifier.
    Type: Application
    Filed: March 16, 2010
    Publication date: September 22, 2011
    Applicant: MICREL, INC.
    Inventors: Robert C. Lutz, Thomas S. Wong, Ulrich Bruedigam
  • Publication number: 20110084724
    Abstract: An integrated circuit capable of dual configuration of data flow and operable in a plurality of operational modes is provided. The circuit includes eight corner pins, wherein the eight corner pins comprise a first corner pin and a second corner pin on each side of the circuit in each of four side sets, wherein a first corner pin of one side of the circuit is proximate and adjacent to a second corner pin of an adjacent side counterclockwise from the first corner pin and together constitute a paired corner set, each paired corner set comprising a differential input and a differential output.
    Type: Application
    Filed: October 8, 2009
    Publication date: April 14, 2011
    Applicant: MICREL, INC
    Inventors: THOMAS S. WONG, DAVID NAREN
  • Patent number: 7920798
    Abstract: A receiver converts an analog signal, derived from light pulses in a GPON fiber optic system, to clean digital electrical signals. A photodetector and transimpedance amplifier (TIA) convert the light pulses to analog electrical signals. A reset signal generated by a media access controller (MAC) in the GPON system signifies the start of a new burst of data. The receiver has a switchable low pass filter that establishes the threshold voltage for determining whether the analog signal is a logical 1 or a logical 0. At the very start of a new burst, the low pass filter has a fast time constant to quickly establish the threshold voltage for the burst. At a later time during the burst, the low pass filter is switched to have a slow time constant to create a relatively stable threshold voltage.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: April 5, 2011
    Assignee: Micrel, Inc.
    Inventors: Thomas S. Wong, Katherine T. Hoang
  • Patent number: 7921321
    Abstract: A circuit is described for automatically adjusting a phase of an input register load clock to be synchronized with transitions of data bits forming an n-bit word. The circuit detects the first transition of a data bit in the n-bit word. The circuit then time-shifts the input clock, to generate a shifted clock, so that a triggering edge of the shifted clock occurs sometime after generation of the transition detect signal, such as in the middle third of a data cycle. Shifting the input clock may be performed by multiplying the input clock to generate a plurality of sub-clock cycles and selecting one of the sub-clock cycles as the start of the shifted clock cycle. The parallel data are applied to inputs of input registers clocked using the shifted clock as the load clock. Thus, the load clock occurs at an optimum time near the middle of a data cycle.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: April 5, 2011
    Assignee: Micrel, Inc.
    Inventors: Thomas S. Wong, Ulrich Bruedigam
  • Publication number: 20100253385
    Abstract: A digital signal detector detects digital signals by only sensing the rising and falling edges of a received digital signal and latches the logic state between the detected edges. Such edges contain very high frequencies that are much higher than the fundamental frequency of the digital signal train. A small high pass filter filters out at least the DC component and the fundamental frequency of the received digital signal. A filtered edge appears as a spike that goes either positive or negative depending on whether the edge is a rising or falling edge. A memory element, such as comprising an RS flip flop, is triggered by the positive and negative spikes. A positive spike triggers the flip flop to output a logical one, and a negative spike triggers the latch to output a logical zero. In this way, the digital signal is recreated without the original digital signal itself being required to pass through the high pass filter.
    Type: Application
    Filed: April 7, 2009
    Publication date: October 7, 2010
    Applicant: MICREL, INC.
    Inventors: Thomas S. Wong, Vincent Stueve
  • Patent number: RE44134
    Abstract: Input structures and topologies are provided for coupling a differential input into a first stage of a circuit, topology, or device. An input pin is coupled to an impedance divider that translates an input voltage to accommodate low input voltage levels, while not saturating an input differential pair. A termination pair with a center tap pin is further coupled to the input pins. The center tap facilitates coupling different termination configurations to the input signal. The topologies accommodate packaged devices that have at least three external pins, two pins for the coupling of a differential input signal, and a pin for the termination pair center tap.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: April 9, 2013
    Assignee: Micrel, Inc.
    Inventors: Thomas S. Wong, Stephen J. B. Pratt