Patents by Inventor Thomas W. Dyer

Thomas W. Dyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090294894
    Abstract: An integrated circuit (IC) with localized SiGe embedded in a substrate and a method of manufacturing the IC is provided. The method includes forming recesses in a substrate on each side of a gate structure and remote from a shallow trench isolation structure. The method further includes growing a stress material within the recesses such that the stress material is bounded on its side only by the substrate.
    Type: Application
    Filed: May 28, 2008
    Publication date: December 3, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: THOMAS W. DYER
  • Publication number: 20090283829
    Abstract: A fin-type field effect transistor (finFET) structure comprises a substrate having a planar upper surface, an elongated fin on the planar upper surface of the substrate (wherein the length and the height of the fin are greater that the width of the fin) and an elongated gate conductor on the planar upper surface of the substrate. The length and the height of the gate conductor are greater than the width of the gate conductor. The fin comprises a center section comprising a semiconducting channel region and end sections distal to the channel region. The end sections of the fin comprise conductive source and drain regions. The gate conductor covers the channel region of the fin. The sidewalls of the channel region comprise a different crystal orientation than the sidewalls of the source and drain regions.
    Type: Application
    Filed: May 13, 2008
    Publication date: November 19, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas W. Dyer, Haining S. Yang
  • Publication number: 20090267196
    Abstract: The present invention relates to high performance three-dimensional (3D) field effect transistors (FETs). Specifically, a 3D semiconductor structure having a bottom surface oriented along one of a first set of equivalent crystal planes and multiple additional surfaces oriented along a second, different set of equivalent crystal planes can be used to form a high performance 3D FET with carrier channels oriented along the second, different set of equivalent crystal planes. More importantly, such a 3D semiconductor structure can be readily formed over the same substrate with an additional 3D semiconductor structure having a bottom surface and multiple additional surfaces all oriented along the first set of equivalent crystal planes. The additional 3D semiconductor structure can be used to form an additional 3D FET, which is complementary to the above-described 3D FET and has carrier channels oriented along the first set of equivalent crystal planes.
    Type: Application
    Filed: July 9, 2009
    Publication date: October 29, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas W. Dyer, Haining S. Yang
  • Publication number: 20090256173
    Abstract: A method is provided of fabricating complementary stressed semiconductor devices, e.g., an NFET having a tensile stressed channel and a PFET having a compressive stressed channel. In such method, a first semiconductor region having a lattice constant larger than silicon can be epitaxially grown on an underlying semiconductor region of a substrate. The first semiconductor region can be grown laterally adjacent to a second semiconductor region which has a lattice constant smaller than that of silicon. Layers consisting essentially of silicon can be grown epitaxially onto exposed major surfaces of the first and second semiconductor regions after which gates can be formed which overlie the epitaxially grown silicon layers. Portions of the first and second semiconductor regions adjacent to the gates can be removed to form recesses. Regions consisting essentially of silicon can be grown within the recesses to form embedded silicon regions. Source and drain regions then can be formed in the embedded silicon regions.
    Type: Application
    Filed: April 15, 2008
    Publication date: October 15, 2009
    Applicant: International Business Machines Corporation
    Inventors: Xiangdong Chen, Thomas W. Dyer, Haining S. Yang
  • Publication number: 20090250738
    Abstract: A node dielectric, an inner electrode, and a buried strap cavity are formed in the deep trench in an SOI substrate. A buried layer contact cavity is formed by lithographic methods. The buried strap cavity and the buried layer contact cavity are filled simultaneously by deposition of a conductive material, which is subsequently planarized to form a buried strap in the deep trench and a buried contact via outside the deep trench. The simultaneous formation of the buried strap and the buried contact via enables formation of a deep trench capacitor in the SOI substrate in an economic and efficient manner.
    Type: Application
    Filed: April 4, 2008
    Publication date: October 8, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Thomas W. Dyer
  • Patent number: 7598540
    Abstract: The present invention relates to complementary metal-oxide-semiconductor (CMOS) devices having gapped dual stressors with dielectric gap fillers. Specifically, each CMOS device of the present invention includes at least one n-channel field effect transistor (n-FET) and at least one p-channel field effect transistor (p-FET). A tensilely stressed dielectric layer overlays the n-FET, and a compressively stressed dielectric layer overlays the p-FET. A gap is located between the tensilely and compressively stressed dielectric layers and is filled with a dielectric filler material. In one specific embodiment of the present invention, both the tensilely and compressively stressed dielectric layers are covered by a layer of the dielectric filler material, which is essentially free of stress. In an alternatively embodiment of the present invention, the dielectric filler material is only present in the gap between the tensilely and compressively stressed dielectric layers.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: October 6, 2009
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Thomas W. Dyer, David R. Medeiros, Anna W. Topol
  • Patent number: 7598572
    Abstract: An integrated circuit device having an increased source/drain contact area by a formed silicided polysilicon spacer. The polysilicon sidewall spacer is formed having a height less than seventy percent of said gate conductor height, and having a continuous surface silicide layer over the deep source and drain regions. The contact area is enhanced by the silicided polysilicon spacer.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: October 6, 2009
    Assignees: International Business Machines Corporation, Samsung Electronic Co., Ltd (Corporation), Chartered Semiconductor Manufacturing Ltd (Corporation)
    Inventors: Thomas W. Dyer, Sunfei Fang, Ja-Hum Ku, Yong Meng Lee
  • Publication number: 20090236691
    Abstract: A deep trench metal-insulator-metal (MIM) capacitor in an SOI-type substrate. In the deep trench, a layer of TiN, followed by a layer of high-k dielectric, followed by a second layer of TiN. The resulting capacitor is completely buried below the SOI layer, thereby allowing for subsequent structures to be placed over the deep trench.
    Type: Application
    Filed: March 24, 2008
    Publication date: September 24, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas W. Dyer, Eduard A. Cartier, Michael P. Chudzik, Naim Moumen
  • Publication number: 20090236685
    Abstract: The present invention relates to a semiconductor device comprising first and second active device regions that are located in a semiconductor substrate and are isolated from each other by an isolation region therebetween, while the semiconductor device comprises a first conductive interconnect structure that is embedded in the isolation region and connects the first active device region with the second active device region. The semiconductor device preferably contains at least one static random access memory (SRAM) cell located in the semiconductor substrate, and the first conductive interconnect structure cross-connects a pull-down transistor of the SRAM cell with a pull-up transistor thereof. The conductive interconnect preferably comprises doped polysilicon and can be formed by processing steps including photolithographic patterning, etching, and polysilicon deposition.
    Type: Application
    Filed: June 4, 2009
    Publication date: September 24, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Haining Yang, Thomas W. Dyer
  • Publication number: 20090230427
    Abstract: Semiconductor devices are provided which have a tensile and/or compressive strain applied thereto and methods of manufacturing. The structure includes a gate stack comprising an oxide layer, a polysilicon layer and sidewalls with adjacent spacers. The structure further includes an epitaxially grown straining material directly on the polysilicon layer and between portions of the sidewalls. The epitaxially grown straining material, in a relaxed state, strains the polysilicon layer.
    Type: Application
    Filed: March 13, 2008
    Publication date: September 17, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: THOMAS W. DYER, HAINING S. YANG
  • Publication number: 20090233455
    Abstract: A semiconductor device having a tensile and/or compressive strain applied thereto and methods of manufacturing the semiconductor devices to enhance channel strain. The method includes relaxing a gate structure using a low temperature thermal creep process to enhance channel strain. The gate structure undergoes a plastic deformation during the low temperature thermal creep process.
    Type: Application
    Filed: March 13, 2008
    Publication date: September 17, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: THOMAS W. DYER
  • Publication number: 20090230508
    Abstract: An SOI layer has an initial trench extending therethrough, prior to deep trench etch. An oxidation step, such as thermal oxidation is performed to form a band of oxide on an inner periphery of the SOI layer to protect it during a subsequent RIE step for forming a deep trench. The initial trench may stop on BOX underlying the SOI. The band of oxide may also protect the SOI during buried plate implant or gas phase doping.
    Type: Application
    Filed: March 14, 2008
    Publication date: September 17, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas W. Dyer, Herbert L. Ho, Ravi M. Todi
  • Patent number: 7582516
    Abstract: The present invention relates to a semiconductor substrate comprising at least first and second device regions. The first device region has a substantially planar surface oriented along one of a first set of equivalent crystal planes, and the second device region contains a protruding semiconductor structure having multiple intercepting surfaces oriented along a second, different set of equivalent crystal planes. A semiconductor device structure can be formed using such a semiconductor substrate. Specifically, a first field effect transistor (FET) can be formed at the first device region, which comprises a channel that extends along the substantially planar surface of the first device region. A second, complementary FET can be formed at the second device region, while the second, complementary FET comprises a channel that extends along the multiple intercepting surfaces of the protruding semiconductor structure at the second device region.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: September 1, 2009
    Assignee: International Business Machines Corporation
    Inventors: Thomas W. Dyer, Sunfei Fang, Judson R. Holt
  • Publication number: 20090203200
    Abstract: A method for self-aligned gate patterning is disclosed. Two masks are used to process adjacent semiconductor components, such as an nFET and pFET that are separated by a shallow trench isolation region. The mask materials are chosen to facilitate selective etching. The second mask is applied while the first mask is still present, thereby causing the second mask to self align to the first mask. This avoids the undesirable formation of a stringer over the shallow trench isolation region, thereby improving the yield of a semiconductor manufacturing operation.
    Type: Application
    Filed: February 7, 2008
    Publication date: August 13, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Scott D. Halle, Matthew E. Colburn, Bruce B. Doris, Thomas W. Dyer
  • Patent number: 7569446
    Abstract: A complimentary metal oxide semiconductor and a method of manufacturing the same using a self-aligning process to form one of the stacks of device. The method includes depositing an oxide layer over a portion of a metal layer over an nFET region of a CMOS structure and etching the metal layer over a pFET region of the CMOS structure. The method further includes etching at the oxide layer over the nFET region and forming gate structures over the nFET region and pFET region.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: August 4, 2009
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Thomas W. Dyer, Haining S. Yang
  • Patent number: 7569489
    Abstract: The present invention relates to high performance three-dimensional (3D) field effect transistors (FETs). Specifically, a 3D semiconductor structure having a bottom surface oriented along one of a first set of equivalent crystal planes and multiple additional surfaces oriented along a second, different set of equivalent crystal planes can be used to form a high performance 3D FET with carrier channels oriented along the second, different set of equivalent crystal planes. More importantly, such a 3D semiconductor structure can be readily formed over the same substrate with an additional 3D semiconductor structure having a bottom surface and multiple additional surfaces all oriented along the first set of equivalent crystal planes. The additional 3D semiconductor structure can be used to form an additional 3D FET, which is complementary to the above-described 3D FET and has carrier channels oriented along the first set of equivalent crystal planes.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: August 4, 2009
    Assignee: International Business Machines Corporation
    Inventors: Thomas W. Dyer, Haining S. Yang
  • Patent number: 7566949
    Abstract: The present invention relates to high performance three-dimensional (3D) field effect transistors (FETs). Specifically, a 3D semiconductor structure having a bottom surface oriented along one of a first set of equivalent crystal planes and multiple additional surfaces oriented along a second, different set of equivalent crystal planes can be used to form a high performance 3D FET with carrier channels oriented along the second, different set of equivalent crystal planes. More importantly, such a 3D semiconductor structure can be readily formed over the same substrate with an additional 3D semiconductor structure having a bottom surface and multiple additional surfaces all oriented along the first set of equivalent crystal planes. The additional 3D semiconductor structure can be used to form an additional 3D FET, which is complementary to the above-described 3D FET and has carrier channels oriented along the first set of equivalent crystal planes.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: July 28, 2009
    Assignee: International Business Machines Corporation
    Inventors: Thomas W. Dyer, Haining S. Yang
  • Patent number: 7560382
    Abstract: The present invention relates to a semiconductor device comprising first and second active device regions that are located in a semiconductor substrate and are isolated from each other by an isolation region therebetween, while the semiconductor device comprises a first conductive interconnect structure that is embedded in the isolation region and connects the first active device region with the second active device region. The semiconductor device preferably contains at least one static random access memory (SRAM) cell located in the semiconductor substrate, and the first conductive interconnect structure cross-connects a pull-down transistor of the SRAM cell with a pull-up transistor thereof. The conductive interconnect preferably comprises doped polysilicon and can be formed by processing steps including photolithographic patterning, etching, and polysilicon deposition.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: July 14, 2009
    Assignee: International Business Machines Corporation
    Inventors: Haining Yang, Thomas W. Dyer
  • Patent number: 7550330
    Abstract: A semiconductor structure is provided that has body contacts that are located at the edges of the device channel and a buried insulating region under the device channel that is shallower than the buried insulating regions under the source/drain junctions. A method of forming such a semiconductor structure is also described. The inventive method provides for self-alignment of the various features mentioned above with the gate conductor of the structure.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: June 23, 2009
    Assignee: International Business Machines Corporation
    Inventors: Thomas W. Dyer, Zhijiong Luo, Jack A. Mandelman
  • Publication number: 20090152638
    Abstract: A transistor structure includes a first type of transistor (e.g., P-type) positioned in a first area of the substrate, and a second type of transistor (e.g., N-type) positioned in a second area of the substrate. A first type of stressing layer (compressive conformal nitride) is positioned above the first type of transistor and a second type of stressing layer (compressive tensile nitride) is positioned above the second type of transistor. In addition, another first type of stressing layer (compressive oxide) is positioned above the first type of transistor. Further, another second type of stressing layer (compressive oxide) is positioned above the second type of transistor.
    Type: Application
    Filed: December 13, 2007
    Publication date: June 18, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: MICHAEL P. BELYANSKY, Xiangdong Chen, Thomas W. Dyer, Geng Wang, Haining S. Yang