Patents by Inventor Thomas W. Kenny

Thomas W. Kenny has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230285561
    Abstract: This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
    Type: Application
    Filed: March 22, 2023
    Publication date: September 14, 2023
    Inventors: Robert H. GRUBBS, Marshall L. STOLLER, Hoyong CHUNG, Alissa M. FITZGERALD, Thomas W. KENNY, Renee M. THOMAS
  • Patent number: 11642410
    Abstract: This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: May 9, 2023
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Robert H. Grubbs, Marshall L. Stoller, Hoyong Chung, Alissa M. Fitzgerald, Thomas W. Kenny, Renee M. Thomas
  • Publication number: 20220088198
    Abstract: This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
    Type: Application
    Filed: December 7, 2021
    Publication date: March 24, 2022
    Inventors: Robert H. Grubbs, Marshall L. Stoller, Hoyong Chung, Alissa M. Fitzgerald, Thomas W. Kenny, Renee M. Thomas
  • Patent number: 11224655
    Abstract: This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: January 18, 2022
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Robert H. Grubbs, Marshall Leedy Stoller, Hoyong Chung, Alissa M. Fitzgerald, Thomas W. Kenny, Renee M. Thomas
  • Publication number: 20190282695
    Abstract: This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
    Type: Application
    Filed: June 4, 2019
    Publication date: September 19, 2019
    Inventors: Robert H. Grubbs, Marshall Leedy Stoller, Hoyong Chung, Alissa M. Fitzgerald, Thomas W. Kenny, Renee M. Thomas
  • Patent number: 10357565
    Abstract: This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: July 23, 2019
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Robert H. Grubbs, Marshall L. Stoller, Hoyong Chung, Alissa M. Fitzgerald, Thomas W. Kenny, Renee M. Thomas
  • Publication number: 20190038749
    Abstract: This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
    Type: Application
    Filed: October 8, 2018
    Publication date: February 7, 2019
    Inventors: Robert H. Grubbs, Marshall L. Stoller, Hoyong Chung, Alissa M. Fitzgerald, Thomas W. Kenny, Renee M. Thomas
  • Patent number: 10149906
    Abstract: This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: December 11, 2018
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Robert H. Grubbs, Marshall L. Stoller, Hoyong Chung, Alissa M. Fitzgerald, Thomas W. Kenny, Renee M. Thomas
  • Publication number: 20160367669
    Abstract: This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
    Type: Application
    Filed: June 30, 2016
    Publication date: December 22, 2016
    Inventors: Robert H. Grubbs, Marshall L. Stoller, Hoyong Chung, Alissa M. Fitzgerald, Thomas W. Kenny, Renee M. Thomas
  • Patent number: 8602092
    Abstract: A closed loop cooling system and apparatus for controlling a fluid flow rate through the closed loop cooling system, the apparatus comprising a heat exchanger coupled to at least one heat generating device for removing waste heat from the heat generating device, at least one pump for circulating the fluid, a heat rejector for receiving the fluid, at least one fan for removing waste heat from the heat rejector, at least one temperature sensor coupled to the heat generating device to measure the temperature value of the at least one heat generating device, and a controller electrically coupled to the at least one pump, the at least one fan, and the at least one temperature sensor for receiving the temperature value to selectively control the fluid flow rate and the air flow rate, based on the temperature value.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: December 10, 2013
    Assignee: Cooligy, Inc.
    Inventors: Daniel J. Lenehan, Kenneth Goodson, Thomas W. Kenny, Mark Munch, Saroj Sahu
  • Patent number: 8464781
    Abstract: A system for cooling a heat source includes a fluid heat exchanger, a pump, a thermoelectric device and a heat rejector. The thermoelectric device includes a cooling portion and a heating portion. The heat rejector is configured to be in thermal contact with at least a portion of the heating portion of the thermoelectric device. The pump is coupled with the fluid heat exchanger and configured to pass a fluid therethrough. The thermoelectric device is configured along with the heat exchanger in the cooling system.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: June 18, 2013
    Assignee: Cooligy Inc.
    Inventors: Thomas W. Kenny, Mark Munch, Peng Zhou, James Gill Shook, Kenneth Goodson, Dave Corbin, Mark McMaster, James Lovette
  • Publication number: 20130123781
    Abstract: This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
    Type: Application
    Filed: August 24, 2012
    Publication date: May 16, 2013
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: ROBERT H. GRUBBS, MARSHALL L. STOLLER, HOYONG CHUNG, ALISSA M. FITZGERALD, THOMAS W. KENNY, RENEE M. THOMAS
  • Patent number: 7824098
    Abstract: Mechanical transducers such as pressure sensors, resonators or other frequency-reference devices are implemented under conditions characterized by different temperatures. According to an example embodiment of the present invention, a combination of materials is implemented for mechanical transducer applications to mitigate temperature-related changes at or near a selected turnover temperature. In one application, a material property mismatch is used to facilitate single-anchor transducer applications, such as for resonators. Another application is directed to a Silicon-Silicon dioxide combination of materials.
    Type: Grant
    Filed: January 21, 2008
    Date of Patent: November 2, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Renata Melamud, Bongsang Kim, Matthew Hopcroft, Saurabh Chandorkar, Manu Agarwal, Thomas W. Kenny
  • Patent number: 7806586
    Abstract: Mechanical transducers such as pressure sensors, resonators or other frequency-reference devices are implemented under conditions characterized by different temperatures. According to an example embodiment of the present invention, a combination of materials is implemented for mechanical transducer applications to mitigate temperature-related changes. In one application, a material property mismatch is used to facilitate single-anchor transducer applications, such as for resonators. Another application is directed to a Silicon-Silicon dioxide combination of materials.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: October 5, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Renata Melamud, Bongsang Kim, Matt Hopcroft, Saurabh Chandorkar, Manu Agarwal, Thomas W. Kenny
  • Patent number: 7591302
    Abstract: A method of and apparatus for cooling heat-generating devices in a cooling system is disclosed. The apparatus includes various sensors, control schemes and thermal models, to control pump flow rates and fan flow rates to minimize power consumption, fan noise, and noise transients. The apparatus further includes at least one heat-generating device, at least one heat exchanger, and at least one heat rejector. The apparatus can also include many pumps and fans. The method includes controlling a fluid flow rate of at least one pump and an air flow rate of at least one fan, in a cooling system for cooling at least one device. The method comprises the steps of: providing at least one temperature sensor coupled to measure a temperature value of each device; receiving the temperature value from each temperature sensor; and providing a controller to selectively control the fluid flow rate and the air flow rate, based on each temperature value.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: September 22, 2009
    Assignee: Cooligy Inc.
    Inventors: Daniel J. Lenehan, Kenneth Goodson, Thomas W. Kenny, Mark Munch, Saroj Sahu
  • Publication number: 20080204173
    Abstract: Mechanical transducers such as pressure sensors, resonators or other frequency-reference devices are implemented under conditions characterized by different temperatures. According to an example embodiment of the present invention, a combination of materials is implemented for mechanical transducer applications to mitigate temperature-related changes at or near a selected turnover temperature. In one application, a material property mismatch is used to facilitate single-anchor transducer applications, such as for resonators. Another application is directed to a Silicon-Silicon dioxide combination of materials.
    Type: Application
    Filed: January 21, 2008
    Publication date: August 28, 2008
    Inventors: Renata Melamud, Bongsang Kim, Matthew Hopcroft, Saurabh Chandorkar, Manu Agarwal, Thomas W. Kenny
  • Patent number: 7402029
    Abstract: A liquid cooling system utilizing minimal size and volume enclosures, air pockets, compressible objects, and flexible objects is provided to protect against expansion of water-based solutions when frozen. In such a system, pipes, pumps, and heat exchangers are designed to prevent cracking of their enclosures and chambers. Also described are methods of preventing cracking in a liquid cooling system. In all these cases, the system must be designed to tolerate expansion when water is frozen.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: July 22, 2008
    Assignee: Cooligy Inc.
    Inventors: Mark Munch, Kenneth Goodson, David Corbin, Shulin Zeng, Thomas W. Kenny, James Gill Shook
  • Patent number: 7344363
    Abstract: A liquid cooling system utilizing minimal size and volume enclosures, air pockets, compressible objects, and flexible objects is provided to protect against expansion of water-based solutions when frozen. In such a system, pipes, pumps, and heat exchangers are designed to prevent cracking of their enclosures and chambers. Also described are methods of preventing cracking in a liquid cooling system. In all these cases, the system must be designed to tolerate expansion when water is frozen.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: March 18, 2008
    Assignee: Cooligy Inc.
    Inventors: Mark Munch, Kenneth Goodson, David Corbin, Shulin Zeng, Thomas W. Kenny, James Gill Shook
  • Patent number: 7334630
    Abstract: Apparatus and methods according to the present invention utilize micropumps that are capable of generating high pressure and flow without moving mechanical parts and the associated generation of unacceptable electrical and acoustic noise, as well as the associated reduction in reliability. These micropumps are fabricated with materials and structures that improve performance, efficiency, and reduce weight and manufacturing cost relative to presently available micropumps. These micropumps also can allow for recapture of evolved gases and deposited materials, which may provide for long-term closed-loop operation. Apparatus and methods according to the present invention also allow active regulation of the temperature of the device through electrical control of the flow through the pump and can utilize multiple cooling loops to allow independent regulation of the spatial and temporal characteristics of the device temperature profiles. Novel enclosed microchannel structures are also described.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: February 26, 2008
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kenneth E. Goodson, Chuan-Hua Chen, David E. Huber, Linan Jiang, Thomas W. Kenny, Jae-Mo Koo, Daniel J. Laser, James C. Mikkelsen, Juan G. Santiago, Evelyn Ning-Yi Wang, Shulin Zeng, Lian Zhang
  • Patent number: 7316543
    Abstract: An electroosmotic micropump having a plurality of thin, closely-spaced, approximately planar, transversel aligned partitions formed in or on a substrate, among which electroosmotic flow (EOF) is generated. Electrodes are located within enclosed inlet and outlet manifolds on either side of the partition array. Inlet and outlet ports enable fluid to be pumped into and through the micropump and through an external friction load or head. Insulating layer coatings on the formed substrate limit substrate leakage current during pumping operation.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: January 8, 2008
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kenneth E. Goodson, Thomas W. Kenny, Juan G. Santiago, Daniel J. Laser, Chuan-Hua Chen