Patents by Inventor Thomas Wunderer

Thomas Wunderer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10277005
    Abstract: An edge emitting structure includes an active region configured to generate radiation in response to excitation by a pumping beam incident on the structure. A front facet of the edge emitting structure is configured to emit the radiation generated by the active region. A metallic reflective coating disposed on at least one of the front and rear facets of the edge emitting structure. The metallic reflective coating is configured to reflect the radiation generated by the active region.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: April 30, 2019
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Jorg Jeschke, Thomas Wunderer, Mark Teepe
  • Publication number: 20190103729
    Abstract: An ultraviolet (UV) radiation emitting device includes an epitaxial heterostructure comprising an AlGaInN active region. The AlGaInN active region includes one or more quantum well structures with Al content greater than about 50% and having a non-c-plane crystallographic growth orientation. The AlGaInN active region is configured to generate UV radiation in response to excitation by an electron beam generated by an electron beam pump source.
    Type: Application
    Filed: November 19, 2018
    Publication date: April 4, 2019
    Inventors: Thomas Wunderer, Noble M. Johnson
  • Patent number: 10249786
    Abstract: A method of thinning a bulk aluminum nitride substrate includes providing a bulk aluminum nitride (AlN) substrate with at least one epitaxially grown group-III-nitride layer on a first side of the substrate, applying a slurry having a high pH to a second side of the substrate opposite the first side, chemical mechanically polishing the second side of the substrate using the slurry to remove at least a portion of the substrate, resulting in a thinned layer with a thickness less than 50 microns, and bonding the epitaxial layer to a non-native substrate. A device has at least one active zone in a layer of epitaxial Group-III-nitride material, the epitaxial Group-III-nitride layer having a defect density of less than or equal to 108/cm2.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: April 2, 2019
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Max Batres, Zhihong Yang, Thomas Wunderer
  • Publication number: 20190081457
    Abstract: An edge emitting structure includes an active region configured to generate radiation in response to excitation by a pumping beam incident on the structure. A front facet of the edge emitting structure is configured to emit the radiation generated by the active region. A metallic reflective coating disposed on at least one of the front and rear facets of the edge emitting structure. The metallic reflective coating is configured to reflect the radiation generated by the active region.
    Type: Application
    Filed: September 13, 2017
    Publication date: March 14, 2019
    Inventors: Jorg Jeschke, Thomas Wunderer, Mark Teepe
  • Patent number: 10164146
    Abstract: A light emitting device includes a p-side heterostructure having a short period superlattice (SPSL) formed of alternating layers of AlxhighGa1-xhighN doped with a p-type dopant and AlxlowGa1-xlowN doped with the p-type dopant, where xlow?xhigh?0.9. Each layer of the SPSL has a thickness of less than or equal to about six bi-layers of AlGaN.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: December 25, 2018
    Assignee: Palo Alto Research Center Incorporated
    Inventors: John E. Northrup, Bowen Cheng, Christopher L. Chua, Thomas Wunderer, Noble M. Johnson, Zhihong Yang
  • Patent number: 10153616
    Abstract: A vertical external cavity surface emitting laser (VECSEL) structure includes a heterostructure and first and second reflectors. The heterostructure comprises an active region having one or more quantum well structures configured to emit radiation at a wavelength, ?lase, in response to pumping by an electron beam. One or more layers of the heterostructure may be doped. The active region is disposed between the first reflector and the second reflector and is spaced apart from the first reflector by an external cavity. An electron beam source is configured to generate the electron beam directed toward the active region. At least one electrical contact is electrically coupled to the heterostructure and is configured to provide a current path between the heterostructure and ground.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: December 11, 2018
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Thomas Wunderer, Noble M. Johnson, John E. Northrup
  • Publication number: 20180337515
    Abstract: An ultraviolet (UV) radiation emitting device includes an epitaxial heterostructure comprising an AlGaInN active region. The AlGaInN active region includes one or more quantum well structures with Al content greater than about 50% and having a non-c-plane crystallographic growth orientation. The AlGaInN active region is configured to generate UV radiation in response to excitation by an electron beam generated by an electron beam pump source.
    Type: Application
    Filed: May 19, 2017
    Publication date: November 22, 2018
    Inventors: Thomas Wunderer, Noble M. Johnson
  • Patent number: 10135227
    Abstract: An ultraviolet (UV) radiation emitting device includes an epitaxial heterostructure comprising an AlGaInN active region. The AlGaInN active region includes one or more quantum well structures with Al content greater than about 50% and having a non-c-plane crystallographic growth orientation. The AlGaInN active region is configured to generate UV radiation in response to excitation by an electron beam generated by an electron beam pump source.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: November 20, 2018
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Thomas Wunderer, Noble M. Johnson
  • Publication number: 20180331252
    Abstract: A method of thinning a bulk aluminum nitride substrate includes providing a bulk aluminum nitride (AlN) substrate with at least one epitaxially grown group-III-nitride layer on a first side of the substrate, applying a slurry having a high pH to a second side of the substrate opposite the first side, chemical mechanically polishing the second side of the substrate using the slurry to remove at least a portion of the substrate, resulting in a thinned layer with a thickness less than 50 microns, and bonding the epitaxial layer to a non-native substrate. A device has at least one active zone in a layer of epitaxial Group-III-nitride material, the epitaxial Group-III-nitride layer having a defect density of less than or equal to 108/cm2.
    Type: Application
    Filed: November 29, 2016
    Publication date: November 15, 2018
    Inventors: MAX BATRES, ZHIHONG YANG, THOMAS WUNDERER
  • Patent number: 10008629
    Abstract: Light emitting devices having an enhanced degree of polarization, PD, and methods for fabricating such devices are described. A light emitting device may include a light emitting region that is configured to emit light having a central wavelength, ?, and a degree of polarization, PD, where PD>0.006??b for 200 nm???400 nm, wherein b?1.5.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: June 26, 2018
    Assignee: Palo Alto Research Center Incorporated
    Inventors: John E. Northrup, Christopher L. Chua, Michael A. Kneissl, Thomas Wunderer, Noble M. Johnson
  • Patent number: 9912121
    Abstract: A device includes one or more reflector components. Each reflector component comprises layer pairs of epitaxially grown reflective layers and layers of a non-epitaxial material, such as air. Vias extend through at least some of the layers of the reflector components. The device may include a light emitting layer.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: March 6, 2018
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Thomas Wunderer, Christopher L. Chua, Brent S. Krusor, Noble M. Johnson
  • Patent number: 9905727
    Abstract: A thin film device described herein includes a first thin film layer, a second film layer and a heterostructure within the second film layer. The first thin film layer is atop a substrate. The second thin film layer is grown from the first thin film layer through a patterned mask, having openings, under selective area growth (SAG) conditions. The second thin film layer is configured to be released from the first thin film layer by etching a trench. The etched trench may provide access to the patterned mask and the patterned mask may be eliminated with a wet etchant.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: February 27, 2018
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventor: Thomas Wunderer
  • Patent number: 9859468
    Abstract: Diode includes first metal layer, coupled to p-type III-N layer and to first terminal, has a substantially equal lateral size to the p-type III-N layer. Central portion of light emitting region on first side and first metal layer includes first via that is etched through p-type portion, light emitting region and first part of n-type III-N portion. Second side of central portion of light emitting region that is opposite to first side includes second via connected to first via. Second via is etched through second part of n-type portion. First via includes second metal layer coupled to intersection between first and second vias. Electrically-insulating layer is coupled to first metal layer, first via, and second metal layer. First terminals are exposed from electrically-insulating layer. Third metal layer including second terminal is coupled to n-type portion on second side of light emitting region and to second metal layer through second via.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: January 2, 2018
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Thomas Wunderer, Christopher L. Chua, Noble M. Johnson
  • Publication number: 20170317474
    Abstract: A vertical external cavity surface emitting laser (VECSEL) structure includes a heterostructure and first and second reflectors. The heterostructure comprises an active region having one or more quantum well structures configured to emit radiation at a wavelength, ?lase, in response to pumping by an electron beam. One or more layers of the heterostructure may be doped. The active region is disposed between the first reflector and the second reflector and is spaced apart from the first reflector by an external cavity. An electron beam source is configured to generate the electron beam directed toward the active region. At least one electrical contact is electrically coupled to the heterostructure and is configured to provide a current path between the heterostructure and ground.
    Type: Application
    Filed: July 11, 2017
    Publication date: November 2, 2017
    Inventors: Thomas Wunderer, Noble M. Johnson, John E. Northrup
  • Patent number: 9780532
    Abstract: Disclosed herein are embodiments of a vertical external cavity surface emitting laser (VECSEL) device that utilizes an external micromirror array, and methods of fabricating and using the same. In one embodiment, a VECSEL device includes a gain chip, a mirror, and a micromirror array. The gain chip includes a gain medium. The micromirror array includes a plurality of curved micromirrors. The micromirror array and the mirror define an optical cavity, and the micromirror array is oriented such that at least one of the curved micromirrors is to reflect light generated by the gain medium back toward the gain medium along a length of the optical cavity.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: October 3, 2017
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Farsane Tabataba-Vakili, Thomas Wunderer
  • Publication number: 20170200862
    Abstract: Diode includes first metal layer, coupled to p-type III-N layer and to first terminal, has a substantially equal lateral size to the p-type III-N layer. Central portion of light emitting region on first side and first metal layer includes first via that is etched through p-type portion, light emitting region and first part of n-type III-N portion. Second side of central portion of light emitting region that is opposite to first side includes second via connected to first via. Second via is etched through second part of n-type portion. First via includes second metal layer coupled to intersection between first and second vias. Electrically-insulating layer is coupled to first metal layer, first via, and second metal layer. First terminals are exposed from electrically-insulating layer. Third metal layer including second terminal is coupled to n-type portion on second side of light emitting region and to second metal layer through second via.
    Type: Application
    Filed: March 28, 2017
    Publication date: July 13, 2017
    Inventors: Thomas Wunderer, Christopher L. Chua, Noble M. Johnson
  • Patent number: 9705288
    Abstract: A vertical external cavity surface emitting laser (VECSEL) structure includes a heterostructure and first and second reflectors. The heterostructure comprises an active region having one or more quantum well structures configured to emit radiation at a wavelength, ?lase, in response to pumping by an electron beam. One or more layers of the heterostructure may be doped. The active region is disposed between the first reflector and the second reflector and is spaced apart from the first reflector by an external cavity. An electron beam source is configured to generate the electron beam directed toward the active region. At least one electrical contact is electrically coupled to the heterostructure and is configured to provide a current path between the heterostructure and ground.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: July 11, 2017
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Thomas Wunderer, Noble M. Johnson, John E. Northrup
  • Patent number: 9660134
    Abstract: A polarization controlled device has a first layer comprising a group III-nitride semiconductor substrate or template; a second group III-nitride semiconductor layer disposed over the group III-nitride semiconductor substrate or template; a third group III-nitride semiconductor layer disposed over the second group III-nitride semiconductor layer; and a fourth group III-nitride semiconductor layer disposed over the third group III-nitride semiconductor layer. A pn junction is formed at an interface between the third and fourth group III-nitride semiconductor layers. A polarization heterojunction is formed between the second group III-nitride semiconductor layer and the third group III-nitride semiconductor layer. The polarization junction has fixed charges of a polarity on one side of the polarization junction and fixed charges of an opposite polarity on an opposite side of the polarization junction.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: May 23, 2017
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: John E. Northrup, Thomas Wunderer, Jeng Ping Lu, Noble M Johnson
  • Patent number: 9640732
    Abstract: Diode includes light emitting region, first metal layer, dielectric layer, and second metal layer. Light emitting diode includes n-type group III-nitride portion, p-type group III-nitride layer, and light emitting region sandwiched between n- and p-type layers. First metal layer may be coupled to p-type III-N portion and plurality of first terminals. First metal layer and p-type III-N portion may have substantially similar lateral size that is smaller than 200 micrometers. A portion of light emitting region and first metal layer may include a single via. Electrically-insulating layer may be coupled to first metal layer and sides of the single via. First terminals may be exposed from electrically-insulating layer. Second metal layer may include second terminal and may be coupled to electrically-insulating layer and to n-type III-N portion through the single via. The thickness of the diode excluding second terminal may be between 2 and 20 micrometers. Other embodiments are described.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: May 2, 2017
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Thomas Wunderer, Christopher L. Chua, Noble M. Johnson
  • Publication number: 20170069788
    Abstract: A thin film device described herein includes a first thin film layer, a second film layer and a heterostructure within the second film layer. The first thin film layer is atop a substrate. The second thin film layer is grown from the first thin film layer through a patterned mask, having openings, under selective area growth (SAG) conditions. The second thin film layer is configured to be released from the first thin film layer by etching a trench. The etched trench may provide access to the patterned mask and the patterned mask may be eliminated with a wet etchant.
    Type: Application
    Filed: November 7, 2016
    Publication date: March 9, 2017
    Inventor: Thomas Wunderer