Patents by Inventor Thomas Wunderer

Thomas Wunderer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160336481
    Abstract: A light emitting device includes a p-side heterostructure having a short period superlattice (SPSL) formed of alternating layers of AlxhighGa1-xhighN doped with a p-type dopant and AlxlowGa1-xlowN doped with the p-type dopant, where xlow?xhigh?0.9. Each layer of the SPSL has a thickness of less than or equal to about six bi-layers of AlGaN.
    Type: Application
    Filed: July 13, 2016
    Publication date: November 17, 2016
    Inventors: John E. Northrup, Bowen Cheng, Christopher L. Chua, Thomas Wunderer, Noble M. Johnson, Zhihong Yang
  • Patent number: 9490119
    Abstract: A thin film device described herein includes a first thin film layer, a second film layer and a heterostructure within the second film layer. The first thin film layer is atop a substrate. The second thin film layer is grown from the first thin film layer through a patterned mask, having openings, under selective area growth (SAG) conditions. The second thin film layer is configured to be released from the first thin film layer by etching a trench. The etched trench may provide access to the patterned mask and the patterned mask may be eliminated with a wet etchant.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: November 8, 2016
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventor: Thomas Wunderer
  • Patent number: 9444224
    Abstract: An ultraviolet laser diode having multiple portions in the n-cladding layer is described herein. The laser diode comprises a p-cladding layer, an n-cladding layer, a waveguide, and a light-emitting region. The n-cladding layer includes at least a first portion and a second portion. The first portion maintains material quality of the laser diode, while the second portion pulls the optical mode from the p-cladding layer toward the active region. The first portion may have a higher aluminum composition than the second portion. The waveguide is coupled to the n-cladding layer and the light-emitting region is coupled to the waveguide. The light-emitting region is located between the n-cladding layer and the p-cladding layer. Other embodiments are also described.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: September 13, 2016
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Christopher L. Chua, Thomas Wunderer, Zhihong Yang
  • Publication number: 20160254648
    Abstract: A device includes one or more reflector components. Each reflector component comprises layer pairs of epitaxially grown reflective layers and layers of a non-epitaxial material, such as air. Vias extend through at least some of the layers of the reflector components. The device may include a light emitting layer.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 1, 2016
    Inventors: Thomas Wunderer, Christopher L. Chua, Brent S. Krusor, Noble M. Johnson
  • Publication number: 20160233375
    Abstract: Light emitting devices having an enhanced degree of polarization, PD, and methods for fabricating such devices are described. A light emitting device may include a light emitting region that is configured to emit light having a central wavelength, ?, and a degree of polarization, PD, where PD>0.006??b for 200 nm???400 nm, wherein b?1.5.
    Type: Application
    Filed: February 1, 2016
    Publication date: August 11, 2016
    Inventors: John E. Northrup, Christopher L. Chua, Michael A. Kneissl, Thomas Wunderer, Noble M. Johnson
  • Patent number: 9401452
    Abstract: A light emitting device includes a p-side heterostructure having a short period superlattice (SPSL) formed of alternating layers of AlxhighGa1-xhighN doped with a p-type dopant and AlxlowGa1-xlowN doped with the p-type dopant, where xlow?xhigh?0.9. Each layer of the SPSL has a thickness of less than or equal to about six bi-layers of AlGaN.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: July 26, 2016
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: John E. Northrup, Bowen Cheng, Christopher L. Chua, Thomas Wunderer, Noble M. Johnson, Zhihong Yang
  • Publication number: 20160164260
    Abstract: An ultraviolet laser diode having multiple portions in the n-cladding layer is described herein. The laser diode comprises a p-cladding layer, an n-cladding layer, a waveguide, and a light-emitting region. The n-cladding layer includes at least a first portion and a second portion. The first portion maintains material quality of the laser diode, while the second portion pulls the optical mode from the p-cladding layer toward the active region. The first portion may have a higher aluminum composition than the second portion. The waveguide is coupled to the n-cladding layer and the light-emitting region is coupled to the waveguide. The light-emitting region is located between the n-cladding layer and the p-cladding layer. Other embodiments are also described.
    Type: Application
    Filed: December 8, 2014
    Publication date: June 9, 2016
    Inventors: Christopher L. Chua, Thomas Wunderer, Zhihong Yang
  • Publication number: 20160149087
    Abstract: Diode includes light emitting region, first metal layer, dielectric layer, and second metal layer. Light emitting diode includes n-type group III-nitride portion, p-type group III-nitride layer, and light emitting region sandwiched between n- and p-type layers. First metal layer may be coupled to p-type III-N portion and plurality of first terminals. First metal layer and p-type III-N portion may have substantially similar lateral size that is smaller than 200 micrometers. A portion of light emitting region and first metal layer may include a single via. Electrically-insulating layer may be coupled to first metal layer and sides of the single via. First terminals may be exposed from electrically-insulating layer. Second metal layer may include second terminal and may be coupled to electrically-insulating layer and to n-type III-N portion through the single via. The thickness of the diode excluding second terminal may be between 2 and 20 micrometers. Other embodiments are described.
    Type: Application
    Filed: January 21, 2016
    Publication date: May 26, 2016
    Inventors: Thomas Wunderer, Christopher L. Chua, Noble M. Johnson
  • Patent number: 9335262
    Abstract: A device includes one or more reflector components. Each reflector component comprises layer pairs of epitaxially grown reflective layers and layers of a non-epitaxial material, such as air. Vias extend through at least some of the layers of the reflector components. The device may include a light emitting layer.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: May 10, 2016
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Thomas Wunderer, Christopher L. Chua, Brent S. Krusor, Noble M. Johnson
  • Publication number: 20160049771
    Abstract: A vertical external cavity surface emitting laser (VECSEL) structure includes a heterostructure and first and second reflectors. The heterostructure comprises an active region having one or more quantum well structures configured to emit radiation at a wavelength, ?lase, in response to pumping by an electron beam. One or more layers of the heterostructure may be doped. The active region is disposed between the first reflector and the second reflector and is spaced apart from the first reflector by an external cavity. An electron beam source is configured to generate the electron beam directed toward the active region. At least one electrical contact is electrically coupled to the heterostructure and is configured to provide a current path between the heterostructure and ground.
    Type: Application
    Filed: August 17, 2015
    Publication date: February 18, 2016
    Inventors: Thomas Wunderer, Noble M. Johnson, John E. Northrup
  • Patent number: 9252329
    Abstract: Light emitting devices having an enhanced degree of polarization, PD, and methods for fabricating such devices are described. A light emitting device may include a light emitting region that is configured to emit light having a central wavelength, ?, and a degree of polarization, PD, where PD>0.006??b for 200 nm???400 nm, wherein b?1.5.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: February 2, 2016
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: John E. Northrup, Christopher Chua, Michael Kneissl, Thomas Wunderer, Noble M. Johnson
  • Patent number: 9219189
    Abstract: A light emitting device includes a p-side heterostructure, an n-side heterostructure, an active region disposed between the p-side heterostructure and the n-side heterostructure. An electron blocking layer (EBL) disposed between the p-side heterostructure and the active region comprises an aluminum containing group-III-nitride alloy. An aluminum composition of the EBL decreases as a function of distance along a [0001] direction from the active region towards the p-side heterostructure over a majority of the thickness of the EBL.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: December 22, 2015
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: John E. Northrup, Bowen Cheng, Christopher L. Chua, Thomas Wunderer, Noble M. Johnson, Zhihong Yang, Suk Choi
  • Publication number: 20150340223
    Abstract: A thin film device described herein includes a first thin film layer, a second film layer and a heterostructure within the second film layer. The first thin film layer is atop a substrate. The second thin film layer is grown from the first thin film layer through a patterned mask, having openings, under selective area growth (SAG) conditions. The second thin film layer is configured to be released from the first thin film layer by etching a trench. The etched trench may provide access to the patterned mask and the patterned mask may be eliminated with a wet etchant.
    Type: Application
    Filed: May 21, 2014
    Publication date: November 26, 2015
    Inventor: Thomas Wunderer
  • Publication number: 20150280056
    Abstract: A light emitting device includes a p-side heterostructure, an n-side heterostructure, an active region disposed between the p-side heterostructure and the n-side heterostructure. An electron blocking layer (EBL) disposed between the p-side heterostructure and the active region comprises an aluminum containing group-III-nitride alloy. An aluminum composition of the EBL decreases as a function of distance along a [0001] direction from the active region towards the p-side heterostructure over a majority of the thickness of the EBL.
    Type: Application
    Filed: September 14, 2012
    Publication date: October 1, 2015
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: John E. Northrup, Bowen Cheng, Christopher L. Chua, Thomas Wunderer, Noble M. Johnson, Zhihong Yang, Suk Choi
  • Patent number: 9124062
    Abstract: Optically pumped laser structures incorporate reflectors that have high reflectivity and are bandwidth limited to a relatively narrow band around the central laser radiation wavelength. In some cases, the reflectors may be ¾-wavelength distributed Bragg reflectors (DBRs).
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: September 1, 2015
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Thomas Wunderer, John E. Northrup, Mark R. Teepe, Noble M. Johnson
  • Patent number: 9112332
    Abstract: A vertical external cavity surface emitting laser (VECSEL) structure includes a heterostructure and first and second reflectors. The heterostructure comprises an active region having one or more quantum well structures configured to emit radiation at a wavelength, ?lase, in response to pumping by an electron beam. One or more layers of the heterostructure may be doped. The active region is disposed between the first reflector and the second reflector and is spaced apart from the first reflector by an external cavity. An electron beam source is configured to generate the electron beam directed toward the active region. At least one electrical contact is electrically coupled to the heterostructure and is configured to provide a current path between the heterostructure and ground.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: August 18, 2015
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Thomas Wunderer, Noble M. Johnson, John E. Northrup
  • Patent number: 9112331
    Abstract: Surface emitting laser structures that include a partially reflecting element disposed in the laser optical cavity are disclosed. A vertical external cavity surface emitting laser (VECSEL) structure includes a pump source configured to emit radiation at a pump wavelength, ?pump, an external out-coupling reflector, a distributed Bragg reflector (DBR,) and an active region arranged between the DBR and the out-coupling reflector. The active region is configured to emit radiation at a lasing wavelength, ?lase. The VECSEL structure also includes partially reflecting element (PRE) arranged between the gain element and the external out-coupling reflector. The PRE has reflectivity of between about 30% and about 70% for the radiation at the lasing wavelength and reflectivity of between about 30% and about 70% for the radiation at the pump wavelength.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: August 18, 2015
    Assignee: Palo Alto Research Center Incorporated
    Inventors: John E. Northrup, Thomas Wunderer, Noble M. Johnson
  • Patent number: 9106053
    Abstract: A semiconductor surface emitting laser (SEL) includes an active zone comprising quantum well structures separated by spacer layers. The quantum well structures are configured to provide optical gain for the SEL at a lasing wavelength, ?lase. Each quantum well structure and an adjacent spacer layer are configured to form an optical pair of a distributed Bragg reflector (DBR). The active zone including a plurality of the DBR optical pairs is configured to provide optical feedback for the SEL at ?lase.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: August 11, 2015
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventor: Thomas Wunderer
  • Publication number: 20150179873
    Abstract: Diode includes light emitting region, first metal layer, dielectric layer, and second metal layer. Light emitting diode includes n-type group III-nitride portion, p-type group III-nitride layer, and light emitting region sandwiched between n- and p-type layers. First metal layer may be coupled to p-type III-N portion and plurality of first terminals. First metal layer and p-type III-N portion may have substantially similar lateral size that is smaller than 200 micrometers. A portion of light emitting region and first metal layer may include a single via. Electrically-insulating layer may be coupled to first metal layer and sides of the single via. First terminals may be exposed from electrically-insulating layer. Second metal layer may include second terminal and may be coupled to electrically-insulating layer and to n-type III-N portion through the single via. The thickness of the diode excluding second terminal may be between 2 and 20 micrometers. Other embodiments are described.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 25, 2015
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Thomas Wunderer, Christopher L. Chua, Noble M. Johnson
  • Patent number: 9064980
    Abstract: One or more layers are epitaxially grown on a bulk crystalline AlN substrate. The epitaxial layers include a surface which is the initial surface of epitaxial growth of the epitaxial layers. The AlN substrate is substantially removed over a majority of the initial surface of epitaxial growth.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: June 23, 2015
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Christopher L. Chua, Brent S. Krusor, Thomas Wunderer, Noble M. Johnson