Patents by Inventor Tianhe Zhang

Tianhe Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240408397
    Abstract: A system may include a plurality of electrodes and a neural modulation device configured to deliver energy using at least some of the plurality of electrodes to modulate the volume of neural tissue. The neural modulation device may be configured to deliver the energy according to a modulation parameter set. The system may include a programming system configured to program the neural modulation device with the modulation parameter set for use to deliver the energy. The energy corresponds to a broad-spectrum signal having a plurality of frequency ranges, and the programming system is configured to receive user input for targeting energy to a volume of tissue, determine a stimulation configuration, including the modulation parameter set, based on the user input, and deliver the energy corresponding to the broad-spectrum signal using the plurality of electrodes according to the determined stimulation configuration.
    Type: Application
    Filed: June 3, 2024
    Publication date: December 12, 2024
    Inventors: Rosana Esteller, Tianhe Zhang, Rafael Carbunaru
  • Publication number: 20240408395
    Abstract: New waveforms for use in an implantable pulse generator or external trial stimulator are disclosed which mimic actively-driven biphasic pulses, and which are particularly useful for providing sub-perception Spinal Cord Stimulation therapy using low frequency pulses. The waveforms comprise anodic and cathodic pulses which are effectively monophasic in nature, although low-level, non-therapeutic charge recovery can also be used.
    Type: Application
    Filed: August 19, 2024
    Publication date: December 12, 2024
    Inventors: Tianhe Zhang, Michael A. Moffitt, Que Doan
  • Patent number: 12161870
    Abstract: A fitting algorithm for a spinal cord stimulator is disclosed, which is preferably implemented in a clinician programmer having a graphical user interface. In one example, coupling parameters indicative of coupling to neural structures are determined for each electrode in an implanted electrode array. The user interface associates different pole configurations with different anatomical targets and with different measurement techniques (subjective or objective) to gauge the effectiveness of the pole configuration at different positions in the electrode array. The pole configuration, perhaps as modified by the coupling parameters, is then steered in the array, and effectiveness is measured along with a paresthesia threshold at each position. Using at least this data, the fitting algorithm can determine one or more candidate positions in the electrode array at which a therapeutic stimulation program can be centered.
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: December 10, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tianhe Zhang, Que Doan
  • Publication number: 20240390685
    Abstract: An example of a system for delivering neurostimulation may include a programming control circuit and a stimulation control circuit. The programming control circuit may be configured to generate stimulation parameters controlling delivery of the neurostimulation according to a stimulation configuration. The stimulation control circuit may be configured to specify the stimulation configuration, and may include volume definition circuitry and stimulation configuration circuitry. The volume definition circuitry may be configured to determine one or more test volumes, determine a clinical effect resulting from the one or more test volumes each being activated by the neurostimulation, and determine a target volume using the determined clinical effect. The stimulation configuration circuitry may be configured to generate the specified stimulation configuration for activating the target volume.
    Type: Application
    Filed: July 31, 2024
    Publication date: November 28, 2024
    Inventors: Tianhe Zhang, Michael A. Moffitt, Richard Mustakos, Stephen Carcieri
  • Publication number: 20240366947
    Abstract: An example of a system to program a neuromodulator to deliver neuromodulation to a neural target using a plurality of electrodes may comprise a programming control circuit configured to determine target energy allocations for the plurality of electrodes based on at least one target pole to provide a target sub-perception modulation field, and normalize the target sub-perception modulation field, including determine a time domain scaling factor to account for at least one property of a neural target or of a neuromodulation waveform, and apply the time domain scaling factor to the target energy allocations.
    Type: Application
    Filed: July 17, 2024
    Publication date: November 7, 2024
    Inventors: Tianhe Zhang, Changfang Zhu, Que T. Doan
  • Publication number: 20240342475
    Abstract: Systems and methods for using spinal cord stimulation (SCS) for controlling orthostatic hypotension in a patient are described. Embodiments are configured to monitor for changes in the patient's state and apply stimulation when needed. The change in state may be a change in the patient's inertial state, such as a change in posture, activity, or the like. The change in state may also be indicated based on sensed neural activity. Embodiments provide closed-loop feedback control of the stimulation.
    Type: Application
    Filed: April 4, 2024
    Publication date: October 17, 2024
    Inventors: Lisa Moore, Raul Serrano Carmona, Tianhe Zhang
  • Publication number: 20240342476
    Abstract: Systems and methods for optimizing neuromodulation field design for pain therapy are discussed. An exemplary neuromodulation system includes an electrostimulator to stimulate target tissue to induce paresthesia, a data receiver to receive pain data including pain sites experiencing pain, and to receive patient feedback on the induced paresthesia including paresthesia sites experiencing paresthesia. The neuromodulation system includes a processor circuit configured to generate a spatial correspondence indication between the pain sites and the paresthesia sites over one or more dermatomes, determine an anodic weight and a cathodic weight for each of multiple electrode locations using the spatial correspondence indication, and generate a stimulation field definition for neuromodulation pain therapy.
    Type: Application
    Filed: June 26, 2024
    Publication date: October 17, 2024
    Inventors: Jessica Block, Tianhe Zhang, Natalie A. Brill
  • Publication number: 20240325761
    Abstract: A system may include a neuromodulator and a programmer configured to program the neuromodulator to deliver neuromodulation according to a modulated neurostimulation parameter setting. The modulated neurostimulation parameter setting may include a first modulated neurostimulation parameter waveform and a second modulated neurostimulation parameter waveform, and a phase offset between the first and the second modulated neurostimulation parameter waveforms.
    Type: Application
    Filed: March 29, 2024
    Publication date: October 3, 2024
    Inventors: Brandon Thio, Tianhe Zhang, Jessica Block
  • Publication number: 20240316352
    Abstract: A sensing electrode selection algorithm is disclosed for use with an implantable pulse generator having an electrode array. The algorithm automatically selects optimal sensing electrodes in the array to be used with a pre-determined stimulation therapy appropriate for the patient. The algorithm preferably senses stimulation artifacts using different sensing electrodes, and more specifically different sensing electrode pairs as is appropriate when differential sensing is used. The algorithm further preferably senses these stimulation artifacts with the patient placed in two or more postures. The algorithm processes the stimulation artifact features measured at the different sensing electrodes and at the different postures to automatically determine one or more sensing electrode pairs that best distinguishes the two or more postures given the prescribed stimulation therapy.
    Type: Application
    Filed: June 6, 2024
    Publication date: September 26, 2024
    Inventors: Tianhe Zhang, Rosana Esteller, Thomas W. Stouffer
  • Patent number: 12097372
    Abstract: Systems and methods for optimizing neuromodulation field design for pain therapy are discussed. An exemplary neuromodulation system includes an electrostimulator to stimulate target tissue to induce paresthesia, a data receiver to receive pain data including pain sites experiencing pain, and to receive patient feedback on the induced paresthesia including paresthesia sites experiencing paresthesia. The neuromodulation system includes a processor circuit configured to generate a spatial correspondence indication between the pain sites and the paresthesia sites over one or more dermatomes, determine an anodic weight and a cathodic weight for each of multiple electrode locations using the spatial correspondence indication, and generate a stimulation field definition for neuromodulation pain therapy.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: September 24, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jessica Block, Tianhe Zhang, Natalie A. Brill
  • Patent number: 12090324
    Abstract: New waveforms for use in an implantable pulse generator or external trial stimulator are disclosed which mimic actively-driven biphasic pulses, and which are particularly useful for providing sub-perception Spinal Cord Stimulation therapy using low frequency pulses. The waveforms comprise anodic and cathodic pulses which are effectively monophasic in nature, although low-level, non-therapeutic charge recovery can also be used.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: September 17, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tianhe Zhang, Michael A. Moffitt, Que Doan
  • Publication number: 20240285950
    Abstract: An implantable stimulator can control delivery of the neurostimulation to a patient according to a stimulation configuration and adjust the stimulation configuration by using a closed-loop control algorithm. In an example, the system may include a remote controller (RC) configured for use by the patient. The RC may transmit stimulator adjustment information to the implantable stimulator. The stimulator adjustment information may include direct control adjustment information for adjusting the stimulation configuration and adaptation adjustment information for adjusting the closed-loop control algorithm. The RC may generate the stimulator adjustment information based on patient adjustment instructions.
    Type: Application
    Filed: February 13, 2024
    Publication date: August 29, 2024
    Inventors: Tianhe Zhang, Andrew James Haddock
  • Patent number: 12070607
    Abstract: An example of a system for delivering neurostimulation may include a programming control circuit and a stimulation control circuit. The programming control circuit may be configured to generate stimulation parameters controlling delivery of the neurostimulation according to a stimulation configuration. The stimulation control circuit may be configured to specify the stimulation configuration, and may include volume definition circuitry and stimulation configuration circuitry. The volume definition circuitry may be configured to determine one or more test volumes, determine a clinical effect resulting from the one or more test volumes each being activated by the neurostimulation, and determine a target volume using the determined clinical effect. The stimulation configuration circuitry may be configured to generate the specified stimulation configuration for activating the target volume.
    Type: Grant
    Filed: October 27, 2022
    Date of Patent: August 27, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tianhe Zhang, Michael A. Moffitt, Richard Mustakos, Stephen Carcieri
  • Patent number: 12064635
    Abstract: An example of a system to program a neuromodulator to deliver neuromodulation to a neural target using a plurality of electrodes may comprise a programming control circuit configured to determine target energy allocations for the plurality of electrodes based on at least one target pole to provide a target sub-perception modulation field, and normalize the target sub-perception modulation field, including determine a time domain scaling factor to account for at least one property of a neural target or of a neuromodulation waveform, and apply the time domain scaling factor to the target energy allocations.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: August 20, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tianhe Zhang, Changfang Zhu, Que T. Doan
  • Publication number: 20240238591
    Abstract: Methods and systems for spinal cord stimulation (SCS) are disclosed. The methods and systems involve using electrode leads implanted within the patient's spinal column to record neural responses evoked by the stimulation. The disclosed neural responses are different in several respects from electrical responses that have previously been measured in the context of SCS, such as stimulation artifacts and evoked compound action potentials (ECAPs). The disclosed neural responses typically occur later in time following the evoking stimulation pulse. Another distinguishing feature is that disclosed neural responses are generally most prominently observed with consistent, relatively unchanging amplitudes when the evoking stimulation frequency is ultra-low, for example, about 10 Hz or less.
    Type: Application
    Filed: December 21, 2023
    Publication date: July 18, 2024
    Inventors: Tianhe Zhang, Rosana Esteller, Rafael Carbunaru
  • Patent number: 12023505
    Abstract: A sensing electrode selection algorithm is disclosed for use with an implantable pulse generator having an electrode array. The algorithm automatically selects optimal sensing electrodes in the array to be used with a pre-determined stimulation therapy appropriate for the patient. The algorithm preferably senses stimulation artifacts using different sensing electrodes, and more specifically different sensing electrode pairs as is appropriate when differential sensing is used. The algorithm further preferably senses these stimulation artifacts with the patient placed in two or more postures. The algorithm processes the stimulation artifact features measured at the different sensing electrodes and at the different postures to automatically determine one or more sensing electrode pairs that best distinguishes the two or more postures given the prescribed stimulation therapy.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: July 2, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tianhe Zhang, Rosana Esteller, Thomas W. Stouffer
  • Patent number: 11998745
    Abstract: Methods and systems for providing neuromodulation therapy are disclosed. The methods and systems are configured to sense an evoked neural response and use the evoked neural response as feedback for providing neuromodulation therapy. Methods of reducing stimulation artifacts that obscure the sensed evoked neural response are disclosed. The methods of artifact reduction include recording a stimulation artifact in the absence of an evoked neural response, aligning and scaling the stimulation artifact with respect to the obscured signal, and subtracting the aligned and scaled artifact from the obscured signal.
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: June 4, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rosana Esteller, Pranjali Borkar, Tianhe Zhang, Kiran K. Gururaj
  • Patent number: 11998743
    Abstract: Methods and systems for providing closed loop control of stimulation provided by an implantable stimulator device are disclosed herein. The disclosed methods and systems use a neural feature prediction model to predict a neural feature, which is used as a feedback control variable for adjusting stimulation. The predicted neural feature is determined based on one or more stimulation artifact features. The disclosed methods and systems can be used to provide closed loop feedback in situations, such as sub-perception therapy, when neural features cannot be readily directly measured.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: June 4, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rosana Esteller, Tianhe Zhang, Qi An, Gezheng Wen
  • Publication number: 20240139525
    Abstract: An example of a neurostimulation system may include a storage device for storing data representing physiological signals and a user interface including a user input, a display screen, and a presentation control circuit. The user input may be configured to receive a selection of signal(s) from the physiological signals and a selection of viewing mode from viewing modes including a metric mode and/or a presence mode. The metric mode allows for visualization of a signal property indicated by a parameter measured from the selected signal(s). The presence mode allows for viewing presence of a feature in the selected signal(s). The presentation control circuit may be configured to allow for the selection of the signal(s) and the viewing mode, to determine a segment of each of the selected signal(s) for presentation according to the selected viewing mode, and to present the determined segment on the display screen.
    Type: Application
    Filed: October 27, 2022
    Publication date: May 2, 2024
    Inventors: Tianhe Zhang, Rosana Esteller
  • Publication number: 20240123234
    Abstract: An examples of a system for delivering neurostimulation to a patient may include a stimulation output circuit configured to deliver the neurostimulation, a sensing circuit configured to sense a neural signal indicative of neural responses to the neurostimulation, and stimulation control circuit. The stimulation control circuit may be configured to control the delivery of the neurostimulation using a plurality of stimulation parameters and may be configured to detect morphological features of the neural responses, to produce a neural response parameter using the detected morphological features, to detect a change in the sensed neural signal, to analyze the produced neural response parameter for attributing the detected change to one of a neural activation change in the patient or a body movement of the patient, and to control a dynamically controlled stimulation parameter of the plurality of stimulation parameters using the sensed neural signal and an outcome of the analysis.
    Type: Application
    Filed: October 13, 2023
    Publication date: April 18, 2024
    Inventors: Rosana Esteller, Max Witwer, Tianhe Zhang, Michael A. Moffitt