Patents by Inventor Tianhe Zhang

Tianhe Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10974042
    Abstract: A system and method for extracting a cardiac signal from a spinal signal include measuring a spinal signal at one or more electrodes that are connected to a neurostimulator and implanted within a patient's spinal canal and processing the spinal signal to extract the cardiac signal, which includes features that are representative of the patient's cardiac activity. Processing the spinal signal to extract the cardiac signal can include filtering the spinal signal using one or more filters. Model reduction schemes such as independent component analysis can additionally or alternatively be employed to extract the cardiac signal. The extracted cardiac signal can include a number of features that correspond to an electrocardiogram and can be used to determine the patient's heart rate and/or to detect a cardiac anomaly. The determined cardiac features can additionally be used to adjust parameters of the stimulation that is provided by the neurostimulator.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: April 13, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rosana Esteller, Deepa Mahajan, Bhaskar Sen, Tianhe Zhang
  • Patent number: 10926097
    Abstract: Techniques are described for providing a therapeutic pseudo-constant DC current in an implantable stimulator using pulses whose positive and negative phases are not charge balanced. Such charge imbalanced pulses act to charge any capacitance in the current path between selected electrode nodes, such as the DC-blocking capacitors and/or any inherent capacitance such as those present at the electrode/tissue interface. These charged capacitances act during quiet periods between the pulses to induce a pseudo-constant DC current. Beneficially, these DC currents can be small enough to stay within charge density limits and hence not corrode the electrode or cause tissue damage, and further can be controlled to stay within such limits or for other reasons. Graphical user interface (GUI) aspects for generating the charge imbalanced pulses and for determining and/or controlling the pseudo-constant DC current are also provided.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: February 23, 2021
    Assignee: Boston Scientific Neuromoduiation Corporation
    Inventors: Tianhe Zhang, G. Karl Steinke, Matthew L. McDonald
  • Publication number: 20210046322
    Abstract: An example of a neurostimulation system may include a storage device for storing data representing physiological signals and a user interface including a user input, a display screen, and a presentation control circuit. The user input may be configured to receive a selection of signal(s) from the physiological signals and a selection of viewing mode from viewing modes including a metric mode and/or a presence mode. The metric mode allows for visualization of a signal property indicated by a parameter measured from the selected signal(s). The presence mode allows for viewing presence of a feature in the selected signal(s). The presentation control circuit may be configured to allow for the selection of the signal(s) and the viewing mode, to determine a segment of each of the selected signal(s) for presentation according to the selected viewing mode, and to present the determined segment on the display screen.
    Type: Application
    Filed: August 11, 2020
    Publication date: February 18, 2021
    Inventors: Tianhe Zhang, Rosana Esteller
  • Publication number: 20210038898
    Abstract: An example of a system to program a neuromodulator to deliver neuromodulation to a neural target using a plurality of electrodes may comprise a programming control circuit configured to determine target energy allocations for the plurality of electrodes based on at least one target pole to provide a target sub-perception modulation field, and normalize the target sub-perception modulation field, including determine a time domain scaling factor to account for at least one property of a neural target or of a neuromodulation waveform, and apply the time domain scaling factor to the target energy allocations.
    Type: Application
    Filed: October 27, 2020
    Publication date: February 11, 2021
    Inventors: Tianhe Zhang, Changfang Zhu, Que T. Doan
  • Patent number: 10905887
    Abstract: An example of a system for delivering neurostimulation may include a programming control circuit and a stimulation control circuit. The programming control circuit may be configured to generate stimulation parameters controlling delivery of the neurostimulation according to a stimulation configuration. The stimulation control circuit may be configured to specify the stimulation configuration, and may include volume definition circuitry and stimulation configuration circuitry. The volume definition circuitry may be configured to determine one or more test volumes, determine a clinical effect resulting from the one or more test volumes each being activated by the neurostimulation, and determine a target volume using the determined clinical effect. The stimulation configuration circuitry may be configured to generate the specified stimulation configuration for activating the target volume.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: February 2, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tianhe Zhang, Michael A. Moffitt, Richard Mustakos, Stephen Carcieri
  • Publication number: 20210016090
    Abstract: A neuromodulation targeting system includes a GUI that facilitates selection of one or more neuromodulation target regions. The GUI provides an interactive display representing anatomy of a patient with user-selectable portions corresponding to a plurality of predefined anatomical regions associated with distinct localized clinical effects of neuromodulation. The system further includes a targeting selector engine that is responsive to user selection of a first portion of the interactive display by configuring delivery of neuromodulation therapy to a first target region to produce a first localized clinical effect in the patient at a location corresponding to the first portion of the display, upon administration of the neuromodulation therapy to the patient.
    Type: Application
    Filed: October 7, 2020
    Publication date: January 21, 2021
    Inventors: Tianhe Zhang, Bradley Lawrence Hershey, Michael A. Moffitt
  • Patent number: 10874859
    Abstract: An example of a system to program a neuromodulator to deliver neuromodulation to a neural target using a plurality of electrodes may comprise a programming control circuit configured to determine target energy allocations for the plurality of electrodes based on at least one target pole to provide a target sub-perception modulation field, and normalize the target sub-perception modulation field, including determine a time domain scaling factor to account for at least one property of a neural target or of a neuromodulation waveform, and apply the time domain scaling factor to the target energy allocations.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: December 29, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tianhe Zhang, Changfang Zhu, Que T. Doan
  • Patent number: 10857354
    Abstract: An example of a system to program a neuromodulator to deliver neuromodulation to a neural target using a plurality of electrodes may comprise a programming control circuit configured to determine target energy allocations for the plurality of electrodes based on at least one target pole to provide a target sub-perception modulation field, calibrate a plurality of electrode groups in the plurality of electrodes where each of the plurality of electrode groups is in an electrode configuration and includes an electrode set of at least one electrode from the plurality of electrodes, including for each of the plurality of electrode groups receive a feedback metric to delivery of modulation energy to the neural target, and normalize the target sub-perception modulation field, including determine a space domain scaling factor using the feedback metric to account for actual electrode-tissue coupling, and apply the space domain scaling factor to the target energy allocations.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: December 8, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tianhe Zhang, Changfang Zhu, Que T. Doan
  • Publication number: 20200376272
    Abstract: Systems and methods for optimizing neuromodulation field design for pain therapy are discussed. An exemplary neuromodulation system includes an electrostimulator to stimulate target tissue to induce paresthesia, a data receiver to receive pain data including pain sites experiencing pain, and to receive patient feedback on the induced paresthesia including paresthesia sites experiencing paresthesia. The neuromodulation system includes a processor circuit configured to generate a spatial correspondence indication between the pain sites and the paresthesia sites over one or more dermatomes, determine an anodic weight and a cathodic weight for each of multiple electrode locations using the spatial correspondence indication, and generate a stimulation field definition for neuromodulation pain therapy.
    Type: Application
    Filed: May 20, 2020
    Publication date: December 3, 2020
    Inventors: Jessica Block, Tianhe Zhang, Natalie A. Brill
  • Patent number: 10850101
    Abstract: A neuromodulation targeting system includes a GUI that facilitates selection of one or more neuromodulation target regions. The GUI provides an interactive display representing anatomy of a patient with user-selectable portions corresponding to a plurality of predefined anatomical regions associated with distinct localized clinical effects of neuromodulation. The system further includes a targeting selector engine that is responsive to user selection of a first portion of the interactive display by configuring delivery of neuromodulation therapy to a first target region to produce a first localized clinical effect in the patient at a location corresponding to the first portion of the display, upon administration of the neuromodulation therapy to the patient.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: December 1, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tianhe Zhang, Bradley Lawrence Hershey, Michael A. Moffitt
  • Patent number: 10814140
    Abstract: An optical stimulation system includes a lead, a control module, and a control interface. The lead includes light emitters for emitting light having wavelengths that activate light-sensitive neurons. The light-sensitive neurons generate either an excitatory response or an inhibitory response when activated depending on the wavelength of the emitted light. The control module directs the emission of light from the light emitters using a set of stimulation parameters. The control interface includes user-selectable controls to adjust the stimulation parameters. The user-selectable controls include a graphical representation of a light emitter for each light emitter. Each graphical representation includes one or more user-selectable emitter controls to indicate whether a corresponding light emitter emits light and, if so, whether the emitted light generates an excitatory response or an inhibitory response from activated light-sensitive neurons.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: October 27, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Tianhe Zhang, Rosana Esteller
  • Publication number: 20200324119
    Abstract: An example of a system for delivering neurostimulation energy may include a programming control circuit and a user interface. The programming control circuit may be configured to generate stimulation parameters according to a neurostimulation program including a pattern of interferential stimulation configured to effect asynchronous and/or non-regular activation of nerve fibers by simultaneously delivering a first stimulation current having a first waveform with a first frequency using a first electrode configuration and a second stimulation current having a second waveform with a second frequency using a second electrode configuration.
    Type: Application
    Filed: April 9, 2020
    Publication date: October 15, 2020
    Inventors: Tianhe Zhang, Joseph M. Bocek, Rosana Esteller
  • Patent number: 10786677
    Abstract: Multi-phasic fields are produced at a neuromodulation site using electrodes. A first phase is directed at a target region such that a first-polarity electrical charge is injected to the target region, and a second phase is directed at portions of the neuromodulation site other than the target region, such that a second-polarity electrical charge opposite the first-polarity electrical charge is injected to those portions of the neuromodulation site to essentially neutralize the first-polarity charge injected at the neuromodulation site while maintaining at least a portion of the first-polarity charge at the target region. In some embodiments, each anode used to produce the first phase is used as a cathode to produce the second phase, and each cathode used to produce the first phase is used as an anode to produce the second phase, and the quantity of charge injected by each electrode in both phases is essentially zero.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: September 29, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Tianhe Zhang, Rafael Carbunaru
  • Publication number: 20200230410
    Abstract: A fitting algorithm for a spinal cord stimulator is disclosed, which is preferably implemented in a clinician programmer having a graphical user interface. In one example, coupling parameters indicative of coupling to neural structures are determined for each electrode in an implanted electrode array. The user interface associates different pole configurations with different anatomical targets and with different measurement techniques (subjective or objective) to gauge the effectiveness of the pole configuration at different positions in the electrode array. The pole configuration, perhaps as modified by the coupling parameters, is then steered in the array, and effectiveness is measured along with a paresthesia threshold at each position. Using at least this data, the fitting algorithm can determine one or more candidate positions in the electrode array at which a therapeutic stimulation program can be centered.
    Type: Application
    Filed: January 8, 2020
    Publication date: July 23, 2020
    Inventors: Tianhe Zhang, Que Doan
  • Patent number: 10716942
    Abstract: Method and systems for determining a set of stimulation parameters for an implantable stimulation device include performing the following steps or actions: receiving a stimulation target; determining a target stimulation field based on the stimulation target; receiving a weighting for a plurality of spatial regions defined relative to a lead including a plurality of electrodes, where a weighting for at least one of the spatial regions is different from a weighting for another one of the spatial regions; and determining, using the weightings for the plurality of spatial regions, a set of stimulation parameters to produce a generated stimulation field that approximates the target stimulation field.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: July 21, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventor: Tianhe Zhang
  • Patent number: 10702696
    Abstract: Delivering stimulation includes delivering temporal patterns of stimulation pulses to respective transducers of an array of transducers, wherein the delivery of the pattern to a particular transducer of the array is different from at least some of the deliveries of the patterns to the other transducers of the array at least according to a time delay. The patterns delivered may include regular temporal patterns each having a respective constant inter-pulse interval. The constant inter-pulse intervals may be about the same. The patterns may be staggered. The transducers may deliver electrical, optical, acoustic, thermal or magnetic stimulation.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: July 7, 2020
    Assignee: Duke University
    Inventors: Warren M. Grill, Tianhe Zhang
  • Publication number: 20200147390
    Abstract: New waveforms for use in an implantable pulse generator or external trial stimulator are disclosed which mimic actively-driven biphasic pulses, and which are particularly useful for providing sub-perception Spinal Cord Stimulation therapy using low frequency pulses. The waveforms comprise anodic and cathodic pulses which are effectively monophasic in nature, although low-level, non-therapeutic charge recovery can also be used.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Inventors: Tianhe Zhang, Michael A. Moffitt, Que Doan
  • Publication number: 20200147393
    Abstract: Methods and systems for programming stimulation parameters for an implantable medical device for neuromodulation, such as spinal cord stimulation (SCS) are disclosed. The stimulation parameters define user-configured waveforms having at least a first phase having a first polarity and a second phase having a second polarity, wherein the first and second phases are separated by an interphase interval (IPI). By delivering user-configured waveforms with different IPIs, stimulation geometry, and other waveform settings, therapeutic asynchronous activation of dorsal column fibers can be obtained.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Inventors: Tianhe Zhang, Rosana Esteller
  • Publication number: 20200139127
    Abstract: A system may include electrodes on at least one lead configured to be operationally positioned for use in modulating a volume of neural tissue, a neural modulation generator configured to deliver energy using at least some electrodes to modulate the volume of neural tissue, a programming system configured to program the programmed modulation parameter set, including determine electrode fractionalizations for the electrodes based on a target multipole. The programmed parameter set may include the determined electrode fractionalizations. The target multipole may be used to determine electrode fractionalizations having at least three target poles that directionally and progressively stack fractionalizations of target poles to provide a linear electric field over the volume of tissue. The neural modulation generator may be configured to use the programmed modulation parameter set to provide the linear electric field over the volume of tissue.
    Type: Application
    Filed: January 8, 2020
    Publication date: May 7, 2020
    Inventors: Tianhe Zhang, Que T. Doan
  • Patent number: 10589104
    Abstract: A method for generating a stimulation program for electrical stimulation of a patient includes providing, by a processor on a display, a first grid of first pixels and a representation of a portion of an electrical stimulation lead with electrodes; obtaining, by the processor, a user selection of a first set of the first pixels in the first grid for stimulation; generating, by the processor, a stimulation program based, at least in part, on the user-selected first set of first pixels for stimulation using at least one of the electrodes of the electrical stimulation lead; and initiating, by the processor, a signal that provides an implantable pulse generator with the stimulation program. In other methods, instead of a grid of pixels, user-selectable primitives or selectable-objects are used to determine a desired stimulation region and generate the stimulation program.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: March 17, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Tianhe Zhang, G. Karl Steinke, Stephen Carcieri